(1 point) find the pdf of = when and have the joint pdf ,
f(x)={ 1/900 0≤x,y≤3
0, otherwise.

Answers

Answer 1

To find the PDF of Z = X + Y when X and Y have the given joint PDF, f(x,y) = 1/900 for 0≤x,y≤3, and 0 otherwise.

Step 1: Identify the range of Z. Since X and Y range from 0 to 3, the minimum value for Z is 0 (when X = 0 and Y = 0) and the maximum value for Z is 6 (when X = 3 and Y = 3).

Step 2: Find the marginal PDFs of X and Y. Since X and Y are uniformly distributed, we have f_X(x) = 1/3 for 0≤x≤3 and f_Y(y) = 1/3 for 0≤y≤3.

Step 3: Compute the convolution of the marginal PDFs.

To find the PDF of Z = X + Y, we need to compute the convolution of f_X(x) and f_Y(y): f_Z(z) = ∫ f_X(x) * f_Y(z-x) dx

Now, let's compute the convolution for different ranges of Z:

a) 0≤z≤3: f_Z(z) = ∫(1/3)(1/3) dx from x=0 to x=z f_Z(z) = (1/9)[x] from 0 to z f_Z(z) = z/9

b) 3

Know more about marginal PDFs,

https://brainly.com/question/30196350

#SPJ11


Related Questions

if a tree dies and the trunk remains undisturbed for 1.190 × 10⁴ years, what percentage of the original ¹⁴c is still present? (the half-life of ¹⁴c is 5730 years.)

Answers

The percentage of the original ¹⁴c is still present is  28.5%.

To calculate the percentage of original ¹⁴C still present, we need to use the formula for                                             radioactive decay:
N = N₀(1/2)^(t/h)
Where:
N₀ = initial amount of ¹⁴C
N = final amount of ¹⁴C after time t
t = time elapsed
h = half-life of ¹⁴C

Substituting the given values:
N₀ = 100%
t = 1.190 × 10⁴ years
h = 5730 years

N = 100% x (1/2)^((1.190 × 10⁴)/5730)
N = 100% x (1/2)^(2.08)
N = 100% x 0.285
N = 28.5%

Therefore, after 1.190 × 10⁴ years, approximately 28.5% of the original ¹⁴C is still present in the tree trunk.

Know more about percentage here:

https://brainly.com/question/24877689

#SPJ11

What is the distance from Point A to Point B? Round your answer to the nearest tenth if necessary.
(Hint: sketch a right triangle and use the Pythagorean theorem.)

Answers

Answer:

the ans is 6.4

Step-by-step explanation:

using the distance formula

d^2= (x2-x1)^2 + (y2-y1)^2

d^2= (8-4)^2 + (8-3)^2

d^2= (4)^2 + (5)^2

d^2= 16+ 25

d^2= 41

d= sqrt of 41*

d= 6.4units

The area of the base of a cylinder is 39 square inches and its height is 14 inches. A cone has the same area for its base and the same height. What is the volume of the cone?

Answers

The requried volume of the cone is 182 cubic inches.

The area of the base of the cylinder is given by:

[tex]A_{cylinder} = \pi r^2[/tex]

where r is the radius of the cylinder. We know that the area of the base is 39 square inches, so we can write:

[tex]\pi r^2 = 39[/tex]

Solving for r, we get:

r = √(39/π)

The height of the cylinder is given as 14 inches. Therefore, the volume of the cylinder is:

[tex]A_{cylinder} = \pi r^2\\ A_{cylinder}= \pi (39/ \pi )(14)\\ A_{cylinder}= 546 \ \ \ cubic inches.[/tex]

Similarly,

The volume of the cone ([tex]V=1/3 \pi r^2h[/tex]) is 182 cubic inches.

Learn more about the volume of the cone here:

https://brainly.com/question/1984638

#SPJ1

helpppp please find the area with explanation, answer and find the missing sides thank you!!​

Answers

Okay so you have to split the shape into two
Shape 1- 42*42=1764
Shape 2- 42*70=2940
Then you add both together
1764+2940= 4,704

If the sampling distribution of the sample mean is normally distributed with n = 18, then calculate the probability that the sample mean falls between 75 and 77. (If appropriate, round final answer to 4 decimal places.)
multiple choice 2
-We cannot assume that the sampling distribution of the sample mean is normally distributed. Correct or Incorrect.
-We can assume that the sampling distribution of the sample mean is normally distributed and the probability that the sample mean falls between 75 and 77 . Correct or Incorrect.

Answers

We can assume that the sampling distribution of the sample mean is normally distributed and the probability that the sample mean falls between 75 and 77 is 0.4582 or 45.82%.

How to calculate sample mean?

Sampling distribution of the sample mean is normally distributed

Use the standard normal distribution to evaluate the probability that the sample mean falls between 75 and 77.

First, lets calculate standard error of the mean:

SE = σ/√n

Since we are not given the population standard deviation (σ), we will use the sample standard deviation (s) as an estimate:

SE = s/√n

Next, we need to calculate the z-scores corresponding to 75 and 77:

z1 = (75 - x) / SE
z1 = (75 - x) / (s/√n)

z2 = (77 - x) / SE
z2 = (77 - x) / (s/√n)

Since the sampling distribution is normal, we can use a standard normal distribution table or a calculator to find the probabilities associated with these z-scores.

P(75 ≤ x ≤ 77) = P(z1 ≤ Z ≤ z2)

We find that:

P(-0.71 ≤ Z ≤ 0.71) = 0.4582

Therefore, the probability that the sample mean falls between 75 and 77 is 0.4582 or 45.82% (rounded to 4 decimal places).

Learn more about sample mean.

brainly.com/question/31101410

#SPJ11

For each of these sequences find a recurrence relation satisfied by this sequence. (The answers are not unique because there are infinitely many different recurrence relations satisfied by any sequence.)
a) an = 3
b) an = 2n
c) an=2n+3
d) an = 5n
e) an = n2
f) an=n2+n
g) an = n + (-1)n
h) an = n!

Answers

a) For an = 3, recurrence relation: a_n = a_(n-1); b) For an = 2n, recurrence relation: a_n = a_(n-1) + 2; c) For an = 2n + 3, recurrence relation: a_n = a_(n-1) + 2; d) For an = 5n, recurrence relation: a_n = a_(n-1) + 5; e) an = n^2, recurrence relation: a_n = a_(n-1) + 2n - 1; f) an = n^2 + n, recurrence relation: a_n = a_(n-1) + 2n; g) an = n + (-1)^n, recurrence relation: a_n = a_(n-1) + 2*(-1)^n; h) an = n!, recurrence relation: a_n = n * a_(n-1).

Explanation:
To find recurrence relations for these sequences, please note that the answers may not be unique, but I will provide one possible recurrence relation for each sequence:

a) a_n = 3

a_(n-1) = 3
Recurrence relation: a_n = a_(n-1)

b) a_n = 2n

a_(n-1) = 2(n-1)

Thus,  a_n - a_(n-1) = 2
Recurrence relation: a_n = a_(n-1) + 2

c) a_n = 2n + 3

a_(n-1)= 2(n-1) + 3

Thus, a_n - a_(n-1) = 2

a_n = a_(n-1) + 2
Recurrence relation: a_n = a_(n-1) + 2

d) a_n = 5n

a_(n-1) = 5(n-1)

Thus, a_n - a_(n-1) = 5
Recurrence relation: a_n = a_(n-1) + 5

e) a_n = n^2

a_(n-1) =  (n-1)^2

Thus, a_n - a_(n-1) = 2n - 1
Recurrence relation: a_n = a_(n-1) + 2n - 1

f) a_n = n^2 + n

a_(n-1) = (n-1)^2 +(n-1)

Thus,  a_n - a_(n-1) = 2n
Recurrence relation: a_n = a_(n-1) + 2n

g) a_n = n + (-1)^n

a_(n-1) = (n-1) + (-1)^(n-1)

Thus,  a_n - a_(n-1) = 2*(-1)^n
Recurrence relation: a_n = a_(n-1) + 2*(-1)^n

h) a_n = n!

a_(n-1) = (n-1)!

Thus,  a_n/a_(n-1)= n
Recurrence relation: a_n = n * a_(n-1)

To know more about Recurrence relation click here:

https://brainly.com/question/31384990

#SPJ11

using intergral test to determine if series an = (x 1)/x^2 where n is in interval [1,inf] is convergent or divergent

Answers

To use the integral test to determine the convergence of the series an = [tex]\frac{x+1}{x^{2} }[/tex], we need to check if the corresponding improper integral converges or diverges.

The integral test states that if f(x) is a positive, continuous, and decreasing function on the interval [1,inf], and if the series an = f(n) for all n in the interval [1,inf], then the series and the integral from 1 to infinity of f(x) both converge or both diverge.

In this case, we have f(x) = [tex]\frac{x+1}{x^{2} }[/tex]. First, we need to check if f(x) is positive, continuous, and decreasing on the interval [1,inf]. f(x) is positive for all x > 0. f'(x) =[tex]\frac{-2x-1}{x^{3} }[/tex] , which is negative for all x > 0. Therefore, f(x) is decreasing on the interval [1,inf].

Next, we need to evaluate the improper integral from 1 to infinity of f(x): integral from 1 to infinity of [tex]\frac{x+1}{x^{2} }[/tex] dx = lim t->inf integral from 1 to t of [tex]\frac{x+1}{x^{2} }[/tex] dx = lim t->inf [tex][\frac{-1}{t}-\frac{1}{t^{2}+t }][/tex] = 0

Since the improper integral converges to 0, the series an also converges by the integral test. Therefore, the series an [tex]\frac{x+1}{x^{2} }[/tex] is convergent on the interval [1,inf].

Know more about integral test,

https://brainly.com/question/31585319

#SPJ111

0, 3, 8, 15...
Generalize the pattern by finding the nth term.

Answers

The nth term of the pattern is (n²-1)

The nth term of a pattern:

To find the nth term identify the patterns in a given sequence and use algebraic expressions to generalize the pattern and find the nth term.

By observing the given series we say that each number is one less than perfect Like 8 is one less than 9, 15 is one less than 16, etc. Use this condition to solve the problem.

Here we have

0, 3, 8, 15...    

To find the nth terms identify the patterns in a given sequence

Here each term can be written as follows

1st term => 0 = (1)² - 1 = 0

2nd term => 3 = (2)² - 1 = 3

3rd term => 8 = (3)² - 1 = 8

4th term => 15 = (4)² - 1 = 15

Similarly

nth term = (n)² - 1 = (n²-1)

Therefore,

The nth term of the pattern is (n²-1)

Learn more about Patterns at

https://brainly.com/question/28814690

#SPJ1

determine whether the set s = {1, x^2, 4 + x^2} spans P_2.O S spans P_2O S does not span P_2

Answers

Given Set S is S spans P_2.

What is indetail answer of the given question?

The set S = {1, x², 4 + x²} spans P_2 if every polynomial in P_2 can be expressed as a linear combination of 1, x², and 4 + x².

Let's consider a general polynomial in P_2, which has the form ax^2 + bx + c, where a, b, and c are constants. We need to determine if there exist constants k1, k2, and k3 such that:

ax² + bx + c = k1(1) + k2(x²) + k3(4 + x²)

Simplifying the right-hand side gives:

ax² + bx + c = (k2 + k3)x² + 4k3

For this equation to hold for all values of x, we must have a = k2 + k3, b = 0, and c = 4k3. Therefore, every polynomial in P_2 can be expressed as a linear combination of the elements in S if and only if we can find constants k1, k2, and k3 that satisfy these equations.

Solving the equations, we get:

k1 = 4k3 - a

k2 = a - k3

k3 is free

Since k3 is a free variable, we can choose it to be any value we like. This means that we can always find constants k1, k2, and k3 that satisfy the equations, and so S spans P_2.

Therefore, the answer is S spans P_2.

Learn more about spans.

brainly.com/question/30358122

#SPJ11

WHAT IS THE ANSWER for this

Answers

Answer:

Yes they are congruent quadrilaterals.

And from the look of it, they possess the same shape and size; not to mention their length are also congruent.

Step-by-step explanation:

This furthet explains how PQR has the same angle as EFG and the length of DE is equal to the length of QR.

which class has the lowest median grade ?

which class has the highest median grade ?

which class has the lowest interquartile range ?

Answers

Which class has the lowest median grade? Class 1

Which class has the highest median grade? Class 2

Which class has the lowest interquartile range? Class 1

Good morning, i really just had a simple question. I was solving this problem:
"Two children weighing 48 pounds and 72 pounds are going to
play on a seesaw that is 10 feet long."
And it basically was asking me for the equilibrium. I set the problem up like this:
M1=72, M2=48, X1=0, X2=10
X=(72(0)+48(10))/72+48= 480/120
Answer:4 ft
but when i checked the answer, it was 6ft, due to M1= 48, so my question is.....why does the smaller child(48lbs) become M1 as to him being M2

Answers

Answer: Your answer is completely correct. It is just that when answering the question, you should assume that the 48 lb child is on the left, and the 72 lb child is on the right. Usually, I always assume that the first mentioned item is the left most one.

Step-by-step explanation:

This is how I will set up the problem: M1 = 48 lbs, M2 = 72 lbs, L = 10 ft

Since (M1 * 0 + M2 * 10)/(M1+M2) = equilibrium, we can use this equation to find the solution:

0 + 720 / (48+72) = 6 feet

Find Sin B. Please help me on this, i am so stuck :(

Answers

Answer:

13/85

Step-by-step explanation:

The sin of an angle is the opposite side over the hypotenuse.

sin B = opp/ hyp

sin B = 13/85

Answer:

sin B = 0.1529

Step-by-step explanation:

To find the Sin B angle we have to use the below formula.

[tex]\sf Sin\:B = \frac{Opposite}{Hypotenuse}[/tex]

Let us solve this now.

[tex]\sf Sin\:B = \frac{Opposite}{Hypotenuse} \\\\\sf Sin\:B = \frac{13}{85} \\\\Sin \:B =0.1529[/tex]

Additionally, To Remove sin, look at the inverse of the sin value and find the exact value of B

[tex]\sf B = sin^-^10.1529\\B=8.79\\\\[/tex]

graph the following system of inequalities
4x + 2y ≤ 16
x + y ≥ 4

Answers

The graph of the system of inequalities is on the image at the end.

How to graph the system of inequalities?

Here we need to graph the two linear inequalities:

4x + 2y ≤ 16

x + y ≥ 4

On the same coordinate axis.

To do so, we can write both of these as lines:

y  ≥ 4 - x

y ≤ (16 - 4x)/2

y ≤ 8 - 2x

Then the system is:

y  ≥ 4 - x

y ≤ 8 - 2x

Now just graph the two lines with solid lines (because of the symbols used) and shadew the region above the first line and the region below the second line.

Learn more about systems of inequalities:

https://brainly.com/question/9774970

#SPJ1

HELP PLEASE
What is the surface area of the pyramid

(A) 38 cm2
(B) 76 cm2
(C) 100 cm2
(D) 152 cm2​

Answers

Answer:

(B) 76 cm2 or (C) 100 cm2 if it's incorrect Sorry

Have a Nice Best Day : ) i'm sorry there where no Answer

determine whether the series ∑3ke−k28 converges or diverges.

Answers

The series ∑3ke − k/28 is a divergent series.

How to determine ∑3ke − k/28 is a divergent series?

To determine whether the series ∑3ke − k/28 converges or diverges, we can use the ratio test.

The ratio test states that if lim┬(n→∞)⁡|an+1/an|<1, then the series converges absolutely; if lim┬(n→∞)⁡|an+1/an|>1, then the series diverges; and if lim┬(n→∞)⁡|an+1/an|=1, then the test is inconclusive.

Let's apply the ratio test to our series:

|a(n + 1)/a(n)| = |3(n + 1) [tex]e^(^-^(^n^+^1^)/28) / (3n e^(^-^n^/^2^8^))|[/tex]

= |(n+1)/n| * |[tex]e^(^-^1^/^2^8^)[/tex]| * |3/3|

= (1 + 1/n) * [tex]e^(^-^1^/^2^8^)[/tex]

As n approaches infinity, the expression (1 + 1/n) approaches 1, and [tex]e^(^-^1^/^2^8^)[/tex] is a constant. Therefore, the limit of the ratio is 1.

Since the limit of the ratio test is equal to 1, the test is inconclusive. We need to use another method to determine convergence or divergence.

One possible method is to use the fact that [tex]e^x > x^2^/^2[/tex] for all x > 0. This implies that [tex]e^(^-^k^/^2^8^)[/tex] < [tex](28/k)^2^/^2[/tex] for all k > 0.

Therefore,

|a(k)| = 3k [tex]e^(^-^k^/^2^8^)[/tex] < 3k[tex](28/k)^2^/^2[/tex]

= 42k/k²

= 42/k

Since ∑1/k is a divergent series, we can use the comparison test to conclude that ∑|a(k)| diverges.

Therefore, the series ∑3ke − k/28 also diverges.

Learn more about convergence or divergence

brainly.com/question/28202684

#SPJ11

Write the letter of the graph that shows the correct end behavior of the function.​

Answers

-4x^3+5x^2+2x: end behavior points downwards in both left and right quadrants.(2x-3)(x+1): end behavior is upward in the upper left quadrant and downward in lower right.-5x^2(x+1)(x+3): end behavior points downwards in lower left and upwards in upper right quadrant.3x-1: end behavior is upward in both left and right quadrants.What is the explanation for the above response?

For the function f(x) = -4x^3 + 5x^2 + 2x, the end behavior can be determined by looking at the degree and leading coefficient of the polynomial. Since the degree is odd and the leading coefficient is negative, the end behavior of the function will be downward in both the left and right quadrants. Therefore, the graph would be D) the arrow points downwards in the lower left and lower right quadrants.

For the function f(x) = (2x-3)(x+1), the end behavior can be determined by looking at the degree of the polynomial. Since the degree is 2, the end behavior will be the same as that of a quadratic function, which means that the graph will either be an upward or downward parabola. In this case, the graph would be A) the arrow points upwards in the upper left quadrant and downwards in the lower right quadrant, because the leading coefficient is positive.

For the function f(x) = 3x - 1, the end behavior is a straight line with a slope of 3. The arrow would be pointing upwards in both the left and right quadrants, so the graph would be B) the arrow points upwards in the upper left quadrant as well as in the upper right quadrant.

C) the arrow points upwards in the upper right quadrant and downwards in the lower left quadrant

This is because the function f(x) = -5x^2 (x+1) (x+3) is a cubic function with a leading coefficient of -5, which means that the end behavior of the function will be downward in the lower left quadrant and upward in the upper right quadrant.

Learn more about end behavior at:

https://brainly.com/question/29145427

#SPJ1

find x if y=3

3x-4y=8(-2-4)

(WITH SOLUTION)​

Answers

Answer:

y=4

Step-by-step explanation:

3×−4y=8(−2−4)

Multiply 3 and −4 to get −12.

−12y=8(−2−4)

Subtract 4 from −2 to get −6.

−12y=8(−6)

Multiply 8 and −6 to get −48.

−12y=−48

Divide both sides by −12.

y=

−12

−48

Divide −48 by −12 to get 4.

y=4

Answer:

X= - 12

Step-by-step explanation:

3x-4*3=-16-32

3x-12= - 48

3x= - 48+12

3x= - 36

X= - 36:3

X = - 12

The sum of three consecutive integers is
45 Find the value of the middle of the three.

Answers

Answer:

So the three consecutive numbers are:

14,15, and 16.

Step-by-step explanation:

Let the three consecutive integers be = x , x+1,  x+ 2 sum = 45

then,

x + (x + 1) + (x +2)  = 45

-> 3x + 3 = 45

-> 3x = 45 - 3

-> x = 14

-> x = 14

-> x + 1 = 15

-> x + 2 = 16

So, three consecutive numbers are : 14, 15, and 16.

what does a^8 • a^7 equal?

Answers

To multiply powers with the same base, add the exponents.

[tex] {a}^{8} {a}^{7} = {a}^{15} [/tex]

Find a power series representation for the function. f(x) = x/36 + x^2 f(x) = sigma^infinity_n=0 () Determine the interval of convergence.

Answers

A power series representation for the function f(x) =[tex]x/36 + x^2[/tex] is  Σ((1/36) * [tex]x^n[/tex]) from n=1 to infinity + Σ[tex](x^{(2n)})[/tex] from n=0 to infinity and its interval of convergence is -1 < x < 1.

To find a power series representation for f(x), we'll rewrite it as a sum of power series:

f(x) = [tex]x/36 + x^2[/tex]
f(x) = (1/36) * [tex]x + x^2[/tex]
f(x) = Σ((1/36) * [tex]x^n[/tex]) from n=1 to infinity + Σ[tex](x^{(2n)})[/tex] from n=0 to infinity

Now let's find the interval of convergence for the given power series. We'll use the Ratio Test:

For the first power series, let a_n = (1/36) * [tex]x^n[/tex]:
lim (n→∞) (|a_(n+1)/a_n|) = lim (n→∞) (|[tex](x^{(n+1)[/tex])/(36 * [tex]x^n[/tex])|) = |x|/36

For the second power series, let b_n = [tex]x^{2n[/tex]:
lim (n→∞) (|b_(n+1)/b_n|) = lim (n→∞) [tex](|(x^{(2(n+1)}))/(x^{(2n)})|) = |x|^2[/tex]

The interval of convergence is where both series converge. The first series converges when |x|/36 < 1, or -36 < x < 36. The second series converges when [tex]|x|^2[/tex] < 1, or -1 < x < 1. Therefore, the interval of convergence for f(x) is:

-1 < x < 1

For more such questions on Power series.

https://brainly.com/question/29888695#

#SPJ11

let x be a discrete random variable. if pr(x<6) = 3/9, and pr(x<=6) = 7/18, then what is pr(x=6)?

Answers

Let x be a discrete random variable. If Pr(x < 6) = 3/9, and Pr(x ≤ 6) = 7/18, then P(X = 6) is 0.06.

A discrete random variable is a variable that can take on only a countable number of values. Examples of discrete random variables include the number of heads when flipping a coin, the number of cars passing through an intersection in a given hour, or the number of students in a classroom.

Let x be a discrete random variable.

Pr(x < 6) = 3/9, and Pr(x ≤ 6) = 7/18

P(X ≤ 6) = P(X < 6) + P(X = 6)

Subtract P(X < 6) on both side, we get

P(X = 6) = P(X ≤ 6) - P(X < 6)

Substitute the values

P(X = 6) = 7/18 - 3/9

First equal the denominator

P(X = 6) = 7/18 - 6/18

P(X = 6) = 1/18

P(X = 6) = 0.06

To learn more about discrete random variable link is here

brainly.com/question/17238189

#SPJ4

is the sequence {an} a solution of the recurrence relation an = 8an−1 − 16an−2 if a) an = 0? b) an = 1? c) an = 2n? d) an = 4n? e) an = n4n? f ) an = 2 ⋅ 4n 3n4n? g) an = (−4)n? h) an = n24n?

Answers

The solutions to the recurrence relation an = 8an−1 − 16an−2 are:

a) {an = 0}

b) {an = 1}

c) {an = 2ⁿ}

d) {an = 4ⁿ}

g) {an = (-4)ⁿ}

What is recurrence relation?

A recurrence relation in mathematics is an equation that states that the last term in a series of integers equals some combination of the terms that came before it.

To determine if a sequence {an} is a solution of the recurrence relation an = 8an−1 − 16an−2, we need to substitute the sequence into the recurrence relation and see if it holds for all n.

a) If an = 0, then:

an = 8an−1 − 16an−2

0 = 8(0) − 16(0)

0 = 0

This holds, so {an = 0} is a solution.

b) If an = 1, then:

an = 8an−1 − 16an−2

1 = 8(1) − 16(0)

1 = 8

This does not hold, so {an = 1} is not a solution.

c) If an = 2n, then:

an = 8an−1 − 16an−2

2n = 8(2n−1) − 16(2n−2)

2n = 8(2n−1) − 16(2n−1)

2n = −8(2n−1)

2n = −2 × 2(2n−1)

This does not hold for all n, so {an = 2n} is not a solution.

d) If an = 4n, then:

an = 8an−1 − 16an−2

4n = 8(4n−1) − 16(4n−2)

4n = 8(4n−1) − 4 × 16(4n−1)

4n = −60 × 16(4n−1)

This does not hold for all n, so {an = 4n} is not a solution.

e) If an = n4n, then:

an = 8an−1 − 16an−2

n4n = 8(n−1)4(n−1) − 16(n−2)4(n−2)

n4n = 8(n−1)4(n−1) − 4 × 16(n−1)4(n−1)

n4n = −60 × 16(n−1)4(n−1)

This does not hold for all n, so {an = n4n} is not a solution.

f) If an = 2 ⋅ 4n/(3n4n), then:

an = 8an−1 − 16an−2

2 ⋅ 4n/(3n4n) = 8 ⋅ 2 ⋅ 4n−1/(3(n−1)4n−2) − 16 ⋅ 2 ⋅ 4n−2/(3(n−2)4n−4)

2 ⋅ 4n/(3n4n) = 16 ⋅ 4n−1/(3(n−1)4n−2) − 16 ⋅ 4n−2/(3(n−2)4n−4)

2 ⋅ 4n/(3n4n) = (16/3) ⋅ (n−1) ⋅ 4n−1/n4n−2 − (16/3) ⋅ (n−2) ⋅ 4n−2/(n−2)4n−4

2 ⋅ 4n/(3n4n) = (16/3) ⋅ (n−1) ⋅ 4n−1/n4n−2 − (16/3) ⋅ (n−2) ⋅ 4n−2/n4n−2

2 ⋅ 4n/(3n4n) = (16/3) ⋅ (n−1) ⋅ 4n−1/n4n−2 − (16/3) ⋅ (n−2) ⋅ 4n−2/n4n−2

2 ⋅ 4n/(3n4n) = (16/3) ⋅ (n−1) ⋅ 4n−1/n4n−2 − (16/3) ⋅ (n−2) ⋅ 4n−2/n4n−2

2 ⋅ 4n/(3n4n) = (16/3) ⋅ (n−1) ⋅ 4n−1/n4n−2 − (16/3) ⋅ (n−2) ⋅ 4n−2/n4n−2

2 ⋅ 4n/(3n4n) = (16/3) ⋅ (n−1)/n − (16/3) ⋅ (n−2)/n

2 ⋅ 4n/(3n4n) = (16/3) ⋅ (1 − 1/n) − (16/3) ⋅ (1 − 2/n)

2 ⋅ 4n/(3n4n) = (16/3n) ⋅ (2 − n)

This does not hold for all n, so {an = 2 ⋅ 4n/(3n4n)} is not a solution.

g) If an = (−4)n, then:

an = 8an−1 − 16an−2

(−4)n = 8(−4)n−1 − 16(−4)n−2

(−4)n = −8 ⋅ 4n−1 + 16 ⋅ 16n−2

(−4)n = −8 ⋅ (−4)n + 16 ⋅ (−4)n

This does not hold for all n, so {an = (−4)n} is not a solution.

h) If an = n2^(4n), then:

an = 8an−1 − 16an−2

n2^(4n) = 8(n-1)2^(4(n-1)) - 16(n-2)2^(4(n-2))

n2^(4n) = 8n2^(4n-4) - 16(n-2)2^(4n-8)

n2^(4n) = 8n2^(4n-4) - 16n2^(4n-8) + 512(n-2)

n2^(4n) - 8n2^(4n-4) + 16n2^(4n-8) - 512(n-2) = 0

n2^(4n-8)(2^16n - 8(2^12)n + 16(2^8)) - 512(n-2) = 0

This does not hold for all n, so {an = n2^(4n)} is not a solution.

Therefore, the solutions to the recurrence relation an = 8an−1 − 16an−2 are:

a) {an = 0}

b) {an = 1}

c) {an = 2ⁿ}

d) {an = 4ⁿ}

g) {an = (-4)ⁿ}

Learn more about recurrence relation on:

https://brainly.com/question/27753635

#SPJ1

For a Poisson distribution, the expression e^- 3(1+3+ 3^2/2!+3^3/3!+3^4/4!) equals the cumulative probability of ___ arrivals during an interval for which the average number of arrivals equals__

Answers

The expression e^(-3)(1+3+3^2/2!+3^3/3!+3^4/4!) equals the cumulative probability of 4 arrivals during an interval for which the average number of arrivals equals 3.

Here's a step-by-step explanation:

1. Recognize that the given expression represents the cumulative probability for a Poisson distribution.
2. Identify the average number of arrivals (λ) as 3, which is the exponent in the e^(-3) term.
3. Recognize that the terms inside the parentheses correspond to the Poisson probability mass function (PMF) for k=0, 1, 2, 3, and 4 arrivals.
4. Since the expression sums up the probabilities for k=0 to k=4, it represents the cumulative probability of 4 arrivals.
5. In summary, the expression represents the cumulative probability of 4 arrivals during an interval where the average number of arrivals is 3.

Given the following information, what is the least squares estimate of the y-intercept?
x y 2 50 5 70 4 75 3 80 6 94
a)3.8 b)5 c) 7.8 d) 42.6
2) A least squares regression line
a) can only be determined if a good linear relationship exists between x and y.
b) ensures that the predictions of y outside the range of the values of x are valid.
c) implies a cause-and-effect relationship between x and y.
d) can be used to predict a value of y if the corresponding x value is given.
3) Regression analysis was applied between sales (in $1,000s) and advertising (in $100s) and the following regression function was obtained.
ŷ = 900 + 6x
Based on the above estimated regression line, if advertising is $10,000, find the point estimate for sales (in dollars).
a) $1,500 b) $60,900 c) $907,000 d) $1,500,000

Answers

Answer:

Step-by-step explanation:

Using the least squares regression method, we obtain the equation of the regression line: y = 22.4x + 26.2. The y-intercept is the value of y when x = 0, which is 26.2. Therefore, the answer is d) 26.2.

The correct answer is d) can be used to predict a value of y if the corresponding x value is given. A least squares regression line is a statistical method used to find the equation of a line that best fits the data points. It can be used to predict the value of the dependent variable (y) for a given value of the independent variable (x).

The regression function is ŷ = 900 + 6x, where x is the advertising in $100s and ŷ is the sales in $1,000s. To find the point estimate for sales when advertising is $10,000, we substitute x = 100 in the regression function: ŷ = 900 + 6(100) = 1,500. Therefore, the answer is a) $1,500.

The least squares estimate of the y-intercept is 42.6.

What is a y-intercept?

An intercept is a point on the y-axis, through which the slope of the line passes. It is the y-coordinate of a point where a straight line or a curve intersects the y-axis. This is represented when we write the equation for a line, y = mx+c, where m is slope and c is the y-intercept.

Given that,

x    y

2   50

5   70

4   75

3   80

6   94

Calculate the means of x and y values:

x_mean = (2 + 5 + 4 + 3 + 6) / 5 = 20 / 5 = 4

y_mean = (50 + 70 + 75 + 80 + 94) / 5 = 369 / 5 = 73.8

Calculate the differences from the means for x and y:

x_diff = [2-4, 5-4, 4-4, 3-4, 6-4] = [-2, 1, 0, -1, 2]

y_diff = [50-73.8, 70-73.8, 75-73.8, 80-73.8, 94-73.8] = [-23.8, -3.8, 1.2, 6.2, 20.2]

Calculate the product of the x and y differences and the square of x differences:

xy_diff = [-2×(-23.8), 1×(-3.8), 0×1.2, -1×6.2, 2×20.2] = [47.6, -3.8, 0, -6.2, 40.4]

x_squared_diff = [-2², 1², 0², -1², 2²] = [4, 1, 0, 1, 4]

4. Sum up the product of the x and y differences and the square of x differences:

sum_xy_diff = 47.6 - 3.8 + 0 - 6.2 + 40.4 = 78

sum_x_squared_diff = 4 + 1 + 0 + 1 + 4 = 10

Calculate the slope (m):

m = 78 / 10 = 7.8

Use the slope (m) to find the least squares estimate of y-intercept (b) using the equation

b = 73.8 - 7.8 × 4 = 73.8 - 31.2

= 42.6

Therefore, the least squares estimate of the y-intercept is 42.6.

To learn more about the y-intercept visit:

brainly.com/question/14180189.

#SPJ2

helppppp please finding the area please give explanation and answer thank youu!!!​

Answers

Answer:

height = 10 m

lengths of bases = 5 m and 10 m

[tex] \frac{1}{2} (10)(5 + 10) = 5(15) = 75[/tex]

So the area of this trapezoid is 75 square meters.

Check the picture below.

[tex]\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h~~=height\\ a,b=\stackrel{parallel~sides}{bases~\hfill }\\[-0.5em] \hrulefill\\ a=5\\ b=10\\ h=10 \end{cases}\implies A=\cfrac{10(5+10)}{2}\implies A=75~m^2[/tex]

solve -2x - 6 > 3x + 14

Answers

Answer:

x < -4

Step-by-step explanation:

-2x - 6 > 3x + 14  Add 2x to both sides

-2x + 2x - 6 > 3x + 2x  + 14

-6 > 5x + 14  Subtract 14 from both sides

-6 - 14 > 5x + 14 - 14

-20 > 5x  Divide both sides by 5

[tex]\frac{-20}{5}[/tex] > [tex]\frac{5}{5}[/tex] x

-4 > x or x < -4

Helping in the name of Jesus.

let a = 1 a a2 1 b b2 1 c c2 . then det(a) is

Answers

The determinant of the given matrix a is: det(a) = b2c2 + a2c2 + a2b2 - 2a2b2 - 2a2c2 + 2abc.

The determinant of a 3x3 matrix can be found using the formula:

det(A) = a11(a22a33 - a32a23) - a12(a21a33 - a31a23) + a13(a21a32 - a31a22)

Substituting the given matrix values, we get:

det(a) = 1(b2c2 - c(b2) + a2(c2) - c(a2) + a(b2) - a(b2)) - a(1c2 - c1 + a2c - c(a2) + a - a(a2)) + a(1b2 - b1 + a(b2) - b(a2) + a - a(b2))

Simplifying this expression, we get:

det(a) = b2c2 + a2c2 + a2b2 - a2b2 - b2c - a2c - a2b + a2c + abc - abc - a2c + ac2 + ab2 - ab2 - abc

Simplifying further, we get:

det(a) = b2c2 + a2c2 + a2b2 - 2a2b2 - 2a2c2 + 2abc

Thus, the determinant of the given matrix a is:

det(a) = b2c2 + a2c2 + a2b2 - 2a2b2 - 2a2c2 + 2abc.

To learn more about determinant, here

https://brainly.com/question/13369636

#SPJ4

The process of dividing a data set into a training, a validation, and an optimal test data set is called Multiple Choice optional testing oversampling overfitting O data partitioning

Answers

The process of dividing a data set into a training, a validation, and an optimal test data set is called data partitioning.

Data partitioning is the process of dividing a dataset into separate subsets that are used for different purposes, such as training a model, validating its performance, and testing it on new data.

The most common way to partition a dataset is into three subsets: a training set, a validation set, and a test set. The training set is used to train a model, the validation set is used to tune the model's hyperparameters and assess its performance during training, and the test set is used to evaluate the final performance of the model on new, unseen data.

Data partitioning helps to prevent overfitting by providing a way to evaluate a model's performance on data that it has not seen during training.

Lear more about data partitioning,

https://brainly.com/question/30825005

#SPj11

show that no polygon exists in which the ratio of the number of diagnolas to the sum of the measures of the polyon's angles is 1 to 18

Answers

Answer: no polygon exists in which the ratio of the number of diagonals to the sum of the measures of the angles is 1 to 18, because the number of sides n cannot be equal to 23.

Step-by-step explanation: Let n be the number of sides of the polygon. The number of diagonals in a polygon of n sides is given by the formula:

d = n(n-3)/2

The sum of the measures of the angles in a polygon of n sides is given by the formula:

180(n-2)

The ratio of the number of diagonals to the sum of the measures of the angles is:

d / [180(n-2)] = [n(n-3)/2] / [180(n-2)] = (n-3) / 360

We want to show that this ratio cannot be equal to 1/18, or:

(n-3) / 360 ≠ 1/18

Multiplying both sides by 360, we get:

n-3 ≠ 20

Adding 3 to both sides, we get:

n ≠ 23

Therefore, no polygon exists in which the ratio of the number of diagonals to the sum of the measures of the angles is 1 to 18, because the number of sides n cannot be equal to 23.

Other Questions
Outline the self-adjusting mechanism that in the neoclassical view endows market systems with an automatic tendency to full employment. What are the conditions for the operation of the self-adjusting mechanism? What are the policy implications of the neoclassical theory? Use graphs and words. Help with this math please .. Write a java program to create a class named 'printnumber' to print various numbers of different datatypes by creating different methods with the same name 'printn' having a parameter for each datatype. write a complete ionic equation for the following reaction. li2so4(aq)+co(no3)2(aq) nottoidu lood7. A physician assistant applies gloves prior to examining each patient. She sees anaverage of 37 patients each day. How many boxes of gloves will she need over thespan of 3 days if there are 100 gloves in each box?8. A medical sales rep had the goal of selling 500 devices in the month of November.He sold 17 devices on average each day to various medical offices and clinics. Byhow many devices did this medical sales rep exceed to fall short of his Novembergoal?9. There are 56 phalange bones in the body. 14 phalange bones are in each hand. Howmany phalange bones are in each foot?10. Frank needs to consume no more than 56 grams of fat each day to maintain hiscurrent weight. Frank consumed 1 KFC chicken pot pie for lunch that contained 41grams of fat. How many fat grams are left to consume this day?11. The rec center purchases premade smoothies in cases of 50. If the rec center sellsan average of 12 smoothies per day, how many smoothies will be left in stock after4 days from one case?12. Ashton drank a 24 oz bottle of water throughout the day at school. How manyounces should he consume the rest of the day if the goal is to drink therecommended 64 ounces of water per day?13. Kathy set a goal to walk at least 10 miles per week. She walks with a friend 3times each week and averages 2.5 miles per walk. How many more miles will sheneed to walk to meet her goal for the week?14. There are 3 drive-up COVID-19 testing clinics in a county. Each drive-up clinichas 500 test kits to use each week. How many test kits are left in the county if anaverage of 82 people visit each clinic 6 days per week? Determine which word is the synonym for the CAPITALIZED word.The NOXIOUS fumes from the broken sewer line made me sick.A. improbableB. evilC. harmfulD. unfair what volume of the water in milliliters contains 135 mg of pb ? (assume that the density of the solution is 1.0 g/ml .) The following reaction take place in a container where CONDITIONS ARE NOT STP! Calculate the volume nitogen dioxide that will be produced when 4,86 dm3 N2O5 decompose. 2N2O5(g) 4NO2(g) + O2(g) Help on letters a-g pls all method (function) headers must include parameters. question 6 options: true false Find a parametrization of the portion of the plane x + y + z = 3 that is contained inside the following a. Inside the cylinder x + y2 b. Inside the cylinder y2 + z = 4 a. What is the correct parameterization? Select the correct choice below and fill in the answer boxes within your choice. (Type exact answers.) K sos ses i + srs k SIS O A. (,0) = OB. (,0) = C. (r.) = OD. (0) = JE+ K i + srs ses b. What is the correct parameterization? Select the correct choice below and fill in the answer boxes within your choice Click to select and enter your answer(s). Find a parametrization of the portion of the plane x +y +z = 3 that is contained inside the following. a. Inside the cylinder x2 + y2 = 4 b. Inside the cylinder y2 + x2 = 4 OD (0) - + STS SOS b. What is the correct parameterization? Select the correct choice below and fill in the answer boxes within your choice. (Type exact answers.) . r.) = | sus usus OC ru.V) SUS OD (UV) = SVS ISVS OB. PUM) SVS SUS Click to select and enter your answer(s) Help me please with this exercise!!! Bonjour, je dois raliser une lettre de motivation d'environ 80 mots pour postuler dans une classe Euro-Anglaise, si quelqu'un avec d'assez bonnes connaissances en Anglais pourrais m'aider, ce ne serait pas de refus. Merci beaucoup :) a race car is traveling on a straight track at a velocity of 80 meters per second when the brakes are applied at time seconds. from time to the moment the race car stops, the acceleration of the race car is given by meters per second per second. during this time period, how far does the race car travel? there should be a separate job cost sheet for each job. group of answer choices true false The philosophical tenet that some of the content of the human mind is innate is called: WRITE A GREAT ESSAY INCLUDING THESIS, 3 PARAGRAPHS PEEL METHOD, AND CONCLUSIONPrompt: To what extent should mass communication mediums like television and radio will be independent on government control in your country?- Jess negate the following statement: prices are high if and only if supply is low and demand is high. Billy's Bank is the only bank in a small town in Arkansas. On a typical Friday an average of 10 customers per hour arrive at the bank to transact business.There is one single teller at the bank, and the average time required to transact business is 4 minutes. It is assumed that service times can be described by the exponential distribution. Although this is the only bank in town, some people in the town have begun using the bank in a neighboring town about 20 miles away. A single line would be used, and the customer at the front of the line would go to the first available bank teller. If a single teller at Billy's is used, find(a) The average time in the line.(b) The average number in the line.(c) The average time in the system.(d) The average number in the system.(e) The probability that the bank is empty Find the volume v of the solid formed by rotating the region inside the first quadrant enclosed by y=x2 and y=5x; about the x-axis. v = bah(x)dx where a= , b= , h(x)= . v=