Answer:
n the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
Explanation:
Velocity is a vector therefore it has magnitude and direction, a change in either of the two is the consequence of an acceleration on the system.
In the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
[tex]a_{t}[/tex] = (v₂-v₁)/Δt
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
[tex]a_{c}[/tex] = v2/R
In the general case, both the module and the address change
a = Ra ( a_{t}^2 + a_{c}^2)
The velocity of an object changes if it undergoes uniformly acceleration
motion by considering if it is:
Positive constant accelerationNegative constant accelerationWhat is Velocity?This is the rate of change of an object's position with time. If the object has
positive constant acceleration, the slope goes upward while if it is a
negative constant acceleration, the slope goes downward.
The direction doesn't change as a result of the uniform speed and
direction that is involved.
Read more about Velocity here https://brainly.com/question/6504879
A fly enters through an open window and zooms around the room. In a Cartesian coordinate system with three axes along three edges of the room, the fly changes its position from point b (2.5 m, 2.0 m, 4.0 m) to point e (4.5 m, 3.0 m, 3.5 m). Find the scalar components of the flies displacement vector (in m).
Answer:
Explanation:
Displacement vector along x axes = 4.5 - 2.5 = 2 m
Displacement vector along y axes = 3 - 2 = 1 m
Displacement vector along z axis = 3.5- 4 = - 0.5 m
Displacement vector = 2 i + j - 0.5 k m
A sidewalk has a length of 75.00m. How many inches is this? (Hint: you need to use two unit conversion fraction. 1 cm equals about 0.3937 inches)
Length = (75.00 m)
Length = (75 meter) x (3.28084 foot/meter) x (12 inch/foot)
Length = (75 x 3.28084 x 12) (meter-foot-inch / meter-foot)
Length = 2,952.76 inches
What does it mean that a theory or model is workable?
PLEASEEEEEEEE HELP ME FAST
Answer:
model is viable if the assumptions that answer it are in accordance with the fundamental principles or laws of physics and if it gives conclusions that can be tested with experiments.
Explanation:
A model in physics must be verified by experiments that are carried out to measure the consequences derived from it.
A model is viable if the assumptions that answer it are in accordance with the fundamental principles or laws of physics and if it gives conclusions that can be tested with experiments. Models that meet these conditions are said to be viable
A 1.7 kg model airplane is flying north at 12.5 m/s initially, and 25 seconds later is observed heading 30 degrees west of north at 25 m/s. What is the magnitude of the average net force on the airplane during this time interval?
Answer:
Average net force = 0.62 N
Explanation:
We are given;
Mass; m = 1.7 kg
Initial velocity; u = 12.5 m/s
Final velocity; v = 25 m/s
time; t = 25 seconds
Now, we are told that the final velocity was 30° west of North. So, resolving this velocity along the horizontal gives;
v = 25 cos 30°
Now, using Newton's first equation of motion gives;
v = u + at
Where a is acceleration
Plugging in the relevant values gives;
25 cos 30° = 12.5 + 25a
21.6506 - 12.5 = 25a
a = (21.6506 - 12.5)/25
a = 0.3660 m/s²
Now, magnitude of the average net force would be; F = ma
F = 1.7 × 0.366
F ≈ 0.62 N
I point
Is the car's speed increasing or decreasing with time?
not enough information
decrease
increase
constant
Answer:
It's increasing with time
what is the difference between each distance traveled and displacement travled
Displacement is a vector magnitude that depends on the position of the body which is individualistic for the trajectory.
While, Distance is a scalar magnitude that measures over the trajectory.
a car moves 8 m in 4 s at a comstant velocity. what is the cars acceleration
Answer:
Zero.
Explanation:
Acceleration is defined as change in velocity per unit time. For constant, the acceleration is zero.
[tex]\hat{a} =\frac{ \delta V}{t}[/tex]as [tex]\delta[/tex][tex]v\\[/tex] is zero.
Is the sinusoidal pattern on the string longer or shorter with a greater propagation velocity?
Answer:
Increase in velocity propagation would lead to a longer sinusoidal pattern.
Explanation:
The velocity of propagation has a relationship with the tension in a standing wave and is given by;
v = √(T/μ)
where:
μ is mass per unit length.
T is tension in string
For the sinusoidal pattern on the string to be longer or shorter, it means that the wavelength will be longer or shorter.
Now, relationship between wavelength and velocity and tension is;
v = λ/T
Where V is velocity of propagation, λ is wavelength and T is Tension.
So, λ = vT
From the earlier standing wave equation, we will see that if we increase the velocity, it means the Tension of the spring will increase as well.
Thus, from this wavelength equation, an increase in velocity means an increase in tension and which will in turn mean an increase in wavelength.
Therefore, an increase in velocity propagation means a longer sinusoidal pattern.
Find the magnitude of the magnetic field ∣∣B⃗ (r)∣∣ inside the cylindrical resistor, where r is the distance from the axis of the cylinder, in terms of i, r, r0, l, and other given variables. You will also need π and μ0. Ignore fringing effects at the ends of the cylinder.
Answer:
The magnetic field inside the cylindrical resistor is [tex]\dfrac{\mu_{0}ir}{2\pir_{0}^2}[/tex]
Explanation:
Given that,
Distance from the axis of the cylinder = r
We need to calculate the magnetic field inside the cylindrical resistor
Using formula of magnetic field
[tex]\oint{\vec{B}\cdot\vec{dl}}=\mu_{0}i_{encl}[/tex]
[tex]B\cdot(2\pi r)=\mu_{0}\dfrac{i\pir^2}{\pi r_{0}^2}[/tex]
Where, r₀ = radius
r = distance
i = current
[tex]|\vec{B}(r)|=\dfrac{\mu_{0}ir}{2\pir_{0}^2}[/tex]
Hence, The magnetic field inside the cylindrical resistor is [tex]\dfrac{\mu_{0}ir}{2\pir_{0}^2}[/tex]
A sinusoidal electromagnetic wave from a radio station passes perpendicularly through an open window that has area of 0.500 m2 . At the window, the electric field of the wave has an rms value 0.0600 V/m .
How much energy does this wave carry through the window during a 30.0-s commercial? Express your answer with the appropriate units.
Answer:
The energy of the wave is 1.435 x 10⁻⁴ J
Explanation:
Given;
area of the window, A = 0.5 m²
the rms value of the field, E = 0.06 V/m
The peak value of electric field is given by;
[tex]E_o = \sqrt{2} *E_{rms}\\\\E_o = \sqrt{2}*0.06\\\\E_o = 0.0849 \ V/m[/tex]
The average intensity of the wave is given by;
[tex]I_{avg} = \frac{c \epsilon_o E_o^2 }{2}\\\\I_{avg} = \frac{(3*10^8)( 8.85*10^{-12}) (0.0849)^2 }{2}\\\\I_{avg} = 9.569*10^{-6} \ W/m^2[/tex]
The average power of the wave is given by;
P = I x A
P = (9.569 x 10⁻⁶ W/m²) (0.5 m²)
P = 4.784 x 10⁻⁶ W
The energy of the wave is given by;
E = P x t
E = (4.784 x 10⁻⁶ W)(30 s)
E = 1.435 x 10⁻⁴ J
Therefore, the energy of the wave is 1.435 x 10⁻⁴ J
an object is accelerating if it is moving____. circle all that apply.
Answer:
With changing speed and/or in a circle
Peter left Town A at 13:30 and travelled towards Town B at an
average speed of 40 mph. At 13:45, Philip left Town A for Town
B at an average speed of 30 mph. What was the distance
between them at 15:00?
Answer:
Explanation: From 13:30 to 15:00, it past: 1 h 30 mins = 1.5
Then, the distance covered by Peter: 40x1.5= 60 miles
From 13:45 to 15:00, it pasts; 1 h 15min =1.25
Then, the distance covered by Philip. 30 x 1.25 = 37.5 miles
Lastly, the distance between them: 60-37.5= 22.5 miles
So the answer is 22.5
The main force(s) acting on the puck after receiving the kick is (are):_________.A) a downward force of gravity and an upward force exerted by the surfaceB) a downward force of gravity, and a horizontal force in the direction of motionC) a downward force of gravity, an upward force exerted by the surface, and a horizontal force in the direction of motionD) a downward force of gravityA) a downward force of gravity and an upward force exerted by the surface
Answer:
the statements, the correct one is A
a downward force of gravity and an upward force exerted by the surface
Explanation:
When the disc is hit, a thrust force is exerted in the direction of movement, at the moment the disc moves this force loses contact and becomes zero.
When the movement is already established there are two main forces: gravity that acts downwards and the reaction force to the support of the disk called normal that acts upwards.
As it is not mentioned that there is friction, this force that opposes the movement is zero.
Analyzing the statements, the correct one is A
in an equation f = l^2-d^2/4l the intercept is
Answer:
the intercept is the orgin (0,0)
Write all the different ways you can think of that describe what it means to be healthy
Answer:
Eat more healthy foods. Workout and build your immune system.
Explanation:
Eat Healthy foods like Carrots, Apples, Bannas, Pears, and anything that deals with not much of any sugar. An example of unhealthy foods is Cakes, Chocolates, Candy, and more. Drink a lot of water.
An engineer is designing a tire for heavy machinery which statement describes the clearest criterion for the solution
Answer:
I think B tell me if it's right
Explanation:
If an engineer is designing a tire for heavy machinery then a statement that describes the clearest criterion for the solution would be that it must function safely under the load of 4500 kg, therefore the correct answer is option C.
What is the mechanical advantage?Mechanical advantage is defined as a measure of the ratio of output force to input force in a system, It is used to analyze the forces in simple machines like levers and pulleys.
Mechanical advantage = output force(load) /input force (effort)
As given in the problem statement that an engineer is designing a tire for heavy machinery and we have to find the statement which describes the clearest criterion for the solution,
As he is designing heavy machinery that must be able to support a large amount of weight,
Thu, the best option that is satisfying the criteria is option C.
Learn more about Mechanical advantages, here
brainly.com/question/16617083
#SPJ6
μN/(kg⋅ns) in the correct SI of:________
Answer:
μN/ (kg ns) = 10³ N / (kg s)
Explanation:
In this exercise they ask us if the notation is correct. Let's write the different terms in the SI systems
force is N
time is in seconds
the unit given for the force is 1 N = 10⁶ μN
the unit of time is 1 s = 10⁹ ns
the correct way to give the answer should be: N / (kg s)
so the notation should be changed
μN /kg ns = μN / (kg ns) (1N / 10⁶ μN) (10⁹ ns / 1 s) =
μN/ (kg ns) = 10³ N / (kg s)
What line on a wheather map indicates áreas where the temperature is the same?
Answer:Isobars and isotherms
Explanation:
The acceleration of a particle traveling along a straight line is
a=16s1/2 m/s2, where s is in meters.
If v = 0, s = 3 m when t = 0, determine the particle's velocity at s = 6 m.
Answer:
V= 14.2m/s
Explanation:
We know that acceleration= dv/dt
So 16m/s²=dv/ dt = v dv/ds
So this wil be
Integral of 16m/s² ds [at 2,2]= integral of v dv at[ 0, v]
So 16[s (3/2)/3/2] at ( s,3) = v²/2
At s= 6m
So v² = 64/3( 6^1.5-3^1.5)
= 14.2m/s
What is the value of the radius of the following circle with an area of 154 cm2?
The area of ANY circle is (π) · (radius²).
So ...
(π) · (radius²) = 154 cm²
radius² = (154 cm²) / (π)
radius² = 49.02 cm²
radius = √(49.02 cm²)
radius = 7 cm
Answer:
[tex] \boxed{\sf Radius \ of \ circle \ (r) = 7 \ cm} [/tex]
Given:
Area of circle = 154 cm²
To Find:
Radius of circle (r)
Explanation:
[tex] \bold{Area \: of \: circle = \pi r^2}[/tex]
[tex] \sf \implies \pi {r}^{2} = 154 \\ \\ \sf \implies {r}^{2} = \frac{154}{\pi} \\ \\ \sf \implies {r}^{2} = \frac{154}{ \frac{22}{7} } \\ \\ \sf \implies {r}^{2} = \frac{154 \times 7}{22} \\ \\ \sf \implies {r}^{2} = \frac{1078}{22} \\ \\ \sf \implies {r}^{2} = 49 \\ \\ \sf \implies {r}^{2} = {7}^{2} \\ \\ \sf \implies r = \sqrt{ {7}^{2} } \\ \\ \sf \implies r = 7 \: cm[/tex]
Aa commercial advertising a diet pill says it is scientifically proven to help you lose weight. It is recommended by a doctor who observed that some of his patients lost weight after taking the pill for a week. Why is this claim considered pseudoscience
Answer:
no more than 10 pills a day depending on what type it is
Explanation:
A typical atom has a diameter of about 1.0×10−10m.
Approximately how many atoms are there along a 2.0 −cm line?
Express your answer using two significant figures.
Answer:
10m
Explanation:
if it was at the 2.0 line it would be 10 m
If a typical atom has a diameter of about 1.0×10⁻¹⁰ m, then there are approximately atoms are there along a 2.0-centimeter line.
What are significant figures?In positional notation, significant figures refer to the digits in a number that is trustworthy and required to denote the amount of something, also known as the significant digits, precision, or resolution.
As given in the problem If a typical atom has a diameter of about 1.0×10⁻¹⁰ m, then we have to find out approximately how many atoms are there along a 2.0-centimeter line,
diameter of the one atom = 1.0×10⁻¹⁰
approximate number of atoms in 2 cm line = 2 ×10⁻² /( 1.0×10⁻¹⁰ )
=2 ×10⁸ atoms
Thus, there are approximately 2 ×10⁸ atoms are there along a 2.0-centimeter line.
Learn more about significant figures here,
brainly.com/question/14359464
#SPJ2
From the gravitational law, calculate the weight W (gravitational force with respect to the earth) of a 70 kg spacecraft traveling in a circular orbit 275 km above the earth's surface. Express W in Newtons and pounds.
Answer:
The value in Newton is [tex]W = 631.92 \ N[/tex]
The value in pounds is [tex]W = 142 \ lb[/tex]
Explanation:
From the question we are told that
The mass of the spacecraft is [tex]m = 70 \ kg[/tex]
The distance above the earth is [tex]d = 275 \ km = 275000 \ m[/tex]
Generally the gravitational force with respect to the earth is mathematically represented as
[tex]W = \frac{G * m * m_e}{ (d + r_e)^2}[/tex]
Here [tex]m_e[/tex] is the mass of earth with value [tex]m_e = 5.978 *10^{24} \ kg[/tex]
[tex]r_e[/tex] is the radius of the earth with value [tex]r_e = 6371 \ km = 6371000 \ m[/tex]
G is the gravitational constant with value [tex]G = 6.67 *10^{-11} \ m^3/ kg\cdot s^2[/tex]
So
[tex]W = \frac{ 6.67 *10^{-11} * 70 * 5.978 *10^{24}}{ (275000 + 6371000)^2}[/tex]
[tex]W = 631.92 \ N[/tex]
Converting to pounds
[tex]W = \frac{631.92 }{4.45}[/tex]
[tex]W = 142 \ lb[/tex]
Which of the following is not a valid use of your driver's license?
O proof of your ability to operate a motor vehicle
O proof of your age
proof of your residency
O proof that you have liability insurance
NEXT QUESTION
In the state where I live, your driver's license is not a proof that you have liability insurance. You don't need liability insurance to get a driver's license, but you need it in order to operate a car that you own.
It may be different in the state where YOU live.
NEXT QUESTION
Two positive charges q1 = q2 = 2.0 μC are located at x = 0, y = 0.30 m and x = 0, y = -0.30 m, respectively. Third point charge Q = 4.0 μC is located at x = 0.40 m, y = 0.What is the net force ((a)magnitude and (b)direction) on charge q1 exerted by the other two charges?
Answer:
F = 0.111015 N
Explanation:
For this exercise the force is given by Coulomb's law
F = k q₁q₂ / r₂₁²
we calculate the electric force of the other two particles on the charge q1
Charges q₁ and q₂
the distance between them is
r₁₂ = y₁ -y₂
r₁₂ = 0.30 + 0.30
r₁₂ = 0.60 m
let's calculate
F₁₂ = 9 10⁹ 2 10⁻⁶ 2 10⁻⁶ / 0.60 2
F₁₂ = 1 10⁻¹ N
directed towards the positive side of the y-axis
Charges 1 and 3
Let's find the distance using the Pythagorean Theorem
r₁₃ = RA [(0.40-0) 2 + (0-0.30) 2]
r₁₃ = 0.50 m
F₁₃ = 9 10⁹ 2 10⁻⁶ 4 10⁻⁶ / 0.50²
F₁₃ = 1.697 10⁻² N
The direction of this force is on the line that joins the two charges (1 and 3), let's use trigonometry to find the components of this force
tan θ = y / x
θ = tan⁻¹ y / x
θ = tan⁻¹ 0.3 / 0.4
tea = 36.87º
The angle from the positive side of the x-axis is
θ ’= 180 - θ
θ ’= 180 - 36.87
θ ’= 143.13º
sin143.13 = F_13y / F₁₃
F_13y = F₁₃ sin 143.13
F{13y} = 1.697 10⁻² sin 143.13
F_13y = 1.0183 10⁻² N
cos 143.13 = F_13x / F₁₃
F₁₃ₓ = F₁₃ cos 143.13
F₁₃ₓ = 1.697 10⁻² cos 143.13
F₁₃ₓ = -1.357 10-2 N
Now we can find the components of the resultant force
Fx = F13x + F12x
Fx = -1,357 10-2 +0
Fx = -1.357 10-2 N
Fy = F13y + F12y
Fy = 1.0183 10-2 + 1 10-1
Fy = 0.110183 N
We use the Pythagorean theorem to find the modulus
F = Ra (Fx2 + Fy2)
F = RA [(1.357 10-2) 2 + 0.110183 2]
F = 0.111015 N
Let's use trigonometry for the angles
tan tea = Fy / Fx
tea = tan-1 (0.110183 / -0.01357)
tea = 1,448 rad
to find the angle about the positive side of the + x axis
tea '= pi - 1,448
Tea = 1.6936 rad
The magnitude of the net force on q1 exerted by the other two charges is 0.357 N.
The direction of the net force on q1 is 50⁰.
The given parameters;
q1 = 2.0 μC located at (0, 0.3) mq2 = 2.0 μC located at (0, -0.3) mq3 = 4.0 μC located at (0.4, 0) mThe force on q1 due to q2 occurs only in y-direction and can be calculated using Coulomb's law as shown below;
[tex]F_1_2 = \frac{kq^2}{r^2}j = \frac{(9\times 10^9) \times (2\times 10^{-6})^2 }{(0.3 +0.3)^2} j \\\\\F_{12} = (0.1)j[/tex]
The force on q1 due to q3 occurs both in x-direction and y-direction, and it is calculated as follows;
[tex]distance \ between \ q1 \ and \ q3\ , r_{13} = \sqrt{0.3^2 \ + \ 0.4^2} = 0.5 \ m\\\\F_{13} = \frac{kq^2}{r_{13}^2} (\frac{0.4i}{0.5} \ + \ \frac{0.3j}{0.5} )\\\\F_{13} = \frac{kq^2}{r_{13}^2} (0.8i + 0.6j)\\\\F_{13} = \frac{9\times 10^9 \times (2\times 10^{-6}) \times (4\times 10^{-6})}{0.5^2} (0.8i + 0.6j)\\\\F_{13} = 0.288(0.8i + 0.6j)\\\\F_{13} = 0.23i + 0.173j[/tex]
The net force is calculated as follows;
[tex]F_{net} = F_{12} \ + \ F_{13}\\\\F_{net} = (0.1j) \ + \ (0.23i + 0.173j)\\\\F_{net} = (0.23i + 0.273j)[/tex]
The magnitude of the net force on q1 is calculated as follows;
[tex]|F| = \sqrt{(0.23^2) \ + \ (0.273^2)} \\\\|F| = 0.357 \ N[/tex]
The direction of the net force on q1 is calculated as follows;
[tex]tan(\theta )= \frac{F_y}{F_x} \\\\\theta = tan^{-1} (\frac{0.273}{0.23} )\\\\\theta = 50^0[/tex]
Learn more here:https://brainly.com/question/17132341
A car accelerates in the +x direction from rest with a constant acceleration of a1 = 1.76 m/s2 for t1 = 20 s. At that point the driver notices a tree limb that has fallen on the road and brakes hard for t2 = 5 s with a constant acceleration of a2 = -5.93 m/s2.Write an expression for the car's speed just before the driver begins braking, v1.If the limb is on the road at a distance of 550 meters from where the car began its initial acceleration, will the car hit the limb?
Answer:
1) an expression for the car's speed is given as
v = u + at
where
v is the car's speed
u is the initial speed of the car
a is the car's acceleration
t is the time spent accelerating
2) The car does not hit the tree limb
Explanation:
The initial velocity of the car = 0 m/s (since it accelerates from rest)
acceleration of the car = 1.76 m/s
time spent accelerating = 20 s
For the car's speed just before the driver begins braking, we use the expression
v = u + at
where v is the final speed of the car just before the driver begins braking
u is the initial velocity with which the car starts moving
a is the acceleration of the car
t is the time spent accelerating from u to v
substituting values, we have
v = 0 + 1.76(20)
v = 0 + 35.2
the car's speed v = 35.2 m/s
In this time the car accelerates, the car moves a distance given by
s = ut + [tex]\frac{1}{2}[/tex]a[tex]t^2[/tex]
where s is the distance covered in this time
u is the initial speed of the vehicle
a is the acceleration
t is the time taken
substituting, we have
s = 0(20) + [tex]\frac{1}{2}[/tex](1.76)[tex]20^{2}[/tex]
s = 0 + 352
distance s = 352 m
When the driver brakes, we have
time spent braking = 5 s
acceleration = -5.93 m/s
and the distance to the limb = 550 m from where the car begun
to get the distance covered in this period, we use the expression
s = ut + [tex]\frac{1}{2}[/tex]a[tex]t^2[/tex]
where s is the distance traveled at this time
u is the speed of the car before it starts braking = 35.2 m/s
a is the acceleration at this point
t is the time taken to decelerate to a stop
substituting values, we have
s = 35.2(5) + [tex]\frac{1}{2}[/tex](-5.93 x [tex]5^2[/tex])
s = 176 - 74.125
s = 101.88 m
Total distance moved by the car = 352 m + 101.88 m = 453.88 m
Since the total distance traveled by the car is less than the distance from the starting point to the place where the tree limb is, the car does not hit the tree limb.
A bird flutters around in a tree in a path described by the dark line: Which vector represents the average velocity of the bird? Question 2 options:
Answer:
Displacement vector represents the average velocity of the bird.
Explanation:
Given that,
A bird flutters around in a tree in a path described by the dark line.
Suppose, given vectors
(a). Time, (b). Displacement, (c). speed, (d). distance
We know that,
Vector quantity :
Vector quantity has direction and magnitude.
Average velocity :
Average velocity is equal to the displacement divided by time.
In mathematically,
[tex]v=\dfrac{D}{t}[/tex]
Where, D = displacement
t = time
We need to find the vector which is represents the average velocity of the bird
Using given data
Average velocity of the bird shows the displacement over the time.
Displacement is the vector quantity.
Hence, Displacement vector represents the average velocity of the bird.
Place gamma rays, infrared, microwaves, radio waves, ultraviolet, visible light, and x-rays in order from largest wavelength to smallest wavelength.
Answer:
Going by EM SPECTRUM WE HAVE
radio waves, microwaves, infrared, VISIBLE LIGHT, ultraviolet, X-rays, GAMMA RAYS
Explanation:
BECAUSE
V= WAVELENGTH/ FREQUENCY
AS FREQUENCY INCREASES WAVELENGTH DECREASE AN VICE VERSA
Force is the amount _____ or _____ on an object
Motion is the action of _____ from one place to another place.
Answer:
force is the amount of work or pressure given to an object
motion is the action of moving one place to another place
imagine imagining an imagination.
Answer:
We’re imagining imagining imagining an imagination...