Answer:
v₃ = - (3 i ^ + 4 j ^) m / s
v₃ = 5 m / s, θ = 233º
Explanation:
This is a momentum problem. Let us form a system formed by the three objects so that the forces during the collisions have been internal and the moment is conserved.
Let's start working with the first two objects. As each object moves in a different direction let's work with the components in an xy coordinate system
X axis
initial instant. Before the shock
p₀ₓ = m₁ v₁₀ + 0
final instant. After the crash
p_{fx} = (m1 + m2) vₓ
the moment is preserved
p₀ₓ = p_{fx}
m₁ v₀₁ = (m₁ + m₂) vₓ
vₓ = [tex]\frac{m_1}{m_1+m_2} \ v_{o1}[/tex]
Y axis
initial instant
p_{oy} = 0 + m₂ v₀₂
final moment
p_{fy} = (m₁ + m₂) v_y
the moment is preserved
p_{oy} = p_{fy}
m₂ v₀₂ = (m₁ + m₂) v_y
v_y = [tex]\frac{m_2}{m_1 +m_2 } \ v_{o2}[/tex]
We already have the speed of the set of these two cars, now let's work on this set and vehicle 3
X axis
initial instant
p₀ₓ = (m₁ + m₂) vₓ + m₃ v₃ₓ
final instant
p_{fx} = 0
p₀ₓ = p_{fx}
(m₁ + m₂) vₓ + m₃ v₃ₓ = 0
v₃ₓ = [tex]- \frac{m_1+m_2 }{m_3} \ v_x[/tex]
Y Axis
initial instant
p_{oy} = (m₁ + m₂) v_y + m₃ v_{3y}
final moment
p_{fy} = 0
p_{oy} = p_{fy}
(m₁ + m₂) v_y + m₃ v_{3y} = 0
v_{3y} = [tex]- \frac{m_1+m_2}{m_3} \ v_y[/tex]
now we substitute the values of the speeds
v₃ₓ = [tex]- \frac{m_1+m_2}{m_3} \ \frac{m_1}{m_1+m_2} \ v_{o1}[/tex]
v₃ₓ = [tex]- \frac{m_1}{m_3} \ v_{o1}[/tex]
v_{3y} = [tex]- \frac{m_1+m_2}{m_3} \ \frac{m_2}{m_1+m_2} \ v_{o2}[/tex]
v_{3y} = [tex]- \frac{m_2}{m_3} \ v_{o2}[/tex]
let's calculate
v₃ₓ = - ⅓ 9
v₃ₓ = - 3 m / s
v_{3y} = - ⅔ 6
v_{3y} = - 4 m / s
therefore the speed of vehicle 3 is
v₃ = - (3 i ^ + 4 j ^) m / s
It can also be given in the form of modulus and angles using the Pythagorean theorem
v₃ = [tex]\sqrt{v_{3x}^2 + v_{3y}^2}[/tex]
v₃ = [tex]\sqrt{3^2+4^2}[/tex]
v₃ = 5 m / s
let's use trigonometry for the angle
tan θ' = [tex]\frac{v_{3y}}{v_{3x}}[/tex]
θ' = tan⁻¹ (\frac{v_{3y}}{v_{3x}})
θ' = tan⁻¹ (4/3)
θ' = 53º
That the two speeds are negative so this angle is in the third quadrant, measured from the positive side of the x axis
θ = 180 + θ'
θ = 180 +53
θ = 233º
Q1. Helmut rides 5km in 2h on his bike. His speed was *
a) 10km/h
b) 2.5km/h
c) 0.4km/h
d) 2.5km
Q2. A plane is travelling at 250km/h and must reach a target that is 3h 58min away. The distance to the target is. *
a) 1000km
b) 89500km
c) 62.5km
d) not enough information
Answer:
Speed of bike = 2.5 km/h
Distance travel = 1,000 km (Approx.)
Explanation:
Given:
Distance cover by Helmut = 5 km
Time taken = 2 hour
Find:
Speed of bike
Computation:
Speed = Distance / Time
Speed of bike = 5 / 2
Speed of bike = 2.5 km/h
Given:
Speed of plane = 250 km/h
time taken = 3 hr 58 min = 3.967 hr
Find:
Distance travel
Computation:
Distance = Speed x time
Distance travel = 250 x 3.967
Distance travel = 991.669
Distance travel = 1,000 km (Approx.)
A certain gas is compressed adiabatically. The amount of work done on the gas is 800 J. What is the change in the internal (thermal) energy of the gas?
Answer:
800J
Explanation:
Using the formula for change in the internal energy of a system
∆U = Q - W
Q = heat added to the system
W =workdone by system.
We know the process is an adiabatic one then, there no addition/ removal of heat, then Q= 0
(∆U = -W )
Then substitute for W, we have
∆U = -[-800]
∆U= 800J
∆U = 800J
A proton moving at v1 = 7.0 Mm/s collides elastically head-on with a second proton moving in the opposite direction at v2 = 8.3 Mm/s. (a) Find the velocity of the first proton after the collision. (b) Find the velocity of the second proton after the collision
Answer:
(a) The final velocity of the first proton after the collision = 8.3 m/s in the opposite to its initial direction
(b) The final velocity of the second proton after the collision = 7 m/s in the opposite to its initial direction
Explanation:
The given parameter of the protons are;
The velocity of the first proton, v₁ = 7.0 Mm/s
The velocity of the second proton, v₂ = -8.3 Mm/s
The type of collision = Elastic collision
In an elastic collision, the kinetic and momentum energies are conserved, therefore, we have, for the initial and final momentums;
(m₁·v₁ + m₂·v₂)₁ = (m₁·v₁ + m₂·v₂)₂
1/2·(m₁·v₁² + m₂·v₂²)₁ = 1/2·(m₁·v₁² + m₂·v₂²)₂
Where, m₁ = m₂ or the protons, we get;
(v₁ + v₂)₁ = (v₁ + v₂)₂
(v₁² + v₂²)₁ = (v₁² + v₂²)₂
Therefore;
7.0 - 8.3 = v₁ + v₂
-1.3 = v₁ + v₂...(1)
7.0² + (-8.3)² = v₁² + v₂²
117.49 = v₁² + v₂²...(2)
From equation (1), we have;
v₁ = -1.3 - v₂
Plugging the value v₁ = -1.3 - v₂ in equation (2) gives;
117.49 = v₁² + v₂² = (-1.3 - v₂)² + v₂² = 2·v₂² + 12·v₂ + 1.69
∴ 2·v₂² + 2.6·v₂ + 1.69 - 117.49 = 0
2·v₂² + 2.6·v₂ - 115.8 = 0
Using the quadratic formula, we have;
v₂ = (-2.6 ± √(2.6² - 4×2×(-115.8)))/(2 × 2)
∴ v₂ ≈ -8.3 m/s or 7 m/s
When v₂ ≈ -8.3, v₁ = -1.3 - v₂ ≈ -1.3 - (-8.3) = 7
When v₂ ≈ 7, v₁ = -1.3 - v₂ ≈ -1.3 - (7) = -8.3
Therefore, the final velocity of the first proton after the collision = 8.3 m/s in the opposite to its initial direction
(b) The final velocity of the second proton after the collision = 7 m/s in the opposite to its initial direction.
someone is pushing a shopping cart and maintaining the same applied force. another person keeps adding items into the cart increasing the mass of cart. what would happen to the acceleration?
Answer:
The rate of acceleration slow
Explanation:
Force (N) = mass (kg) × acceleration (m/s²) , because acceleration multiply by mass it a inverse relationship
An object moves in a circle with a period of 0.025 hours. What is its frequency in Hz?
Frequency, is defined as the rate of rotation, or the number of rotations in some unit of time. Angular frequency, , is the rotation rate measured in radians. These three quantities are related by f = 1 T = ω 2 π .
what is frequency ?The frequency is the number of oscillation per unit time and it is used for defining the cyclic process like rotation, oscillation, wave etc.
The SI unit of the frequency is denoted as Hertz and the symbol λ represents it where one hertz means the wave completed one cycle in one second.
The frequency which explains the phenomenon of oscillatory and vibration like the mechanical vibration, sound signals, light, frequency waves etc. The “period” represented as the time required by the wave for one oscillation, i.e., it is inversely proportional to the frequency.
If the flashes, then the period is the time between the two flashes. And the frequency is the total number of flashes per second.
For more details regarding frequency, visit
brainly.com/question/14400059
#SPJ2
5. How does a jack make changing a tire easier?
Answer: An jack makes changing a tire easier because it lifts up the car to get the tire off of the ground.
Explanation:
Which theory states that the principle cause of forgetting is passage of time? A. motivated forgetting B. retrieval failure C. decay theory D. ineffective encoding
how to makee them love you I AM JK U ARE BEAUTIFUL U DONT NEED A MAN GIRL GO STUDY INSTEAD OF CHECKING UR PHONE 100 TIMES A DAY. ILYYY DONT FORGET THAT
Explanation:
lol ....you are right.......
Some material consisting of a collection of microscopic systems is kept at a high temperature, so that all excited states are populated and can participate in emission of photons. A photon detector capable of detecting photon energies from infrared through ultraviolet observes photons emitted with energies of 0.3 eV, 0.5 eV, 0.8 eV, 2.0 eV, 2.5 eV, and 2.8 eV. These are the only photon energy observed.
a) Draw and label a possible energy-level diagram for one of the microscopic systems, which has 4 bound states. On the diagram, indicate the transitions corresponding to the emitted photons. Explain briefly.
b) The material is now cooled down to a very low temperature, and the photon detector stops detecting photon emissions. Next a beam of light with a continuous range of energies from infrared thorugh ultraviolet shines on the material, and the photon detector observes the beam of light after it passes through the material. What photon energies in this beam of light are observed to be significantly reduced in intensity ("dark absorption lines")? Explain briefly.
Answer:
The responses to this question can be defined as follows:
Explanation:
During energy exchange E=hv, electrodes spring through one orbit to another
Please find the image file in the attachment.
Its absorption layer comprises 0.3 eV, 0.5 eV., 0.8 eV, 2.0 eV, 2.5 eV again, as light passes via material at low temperature those lines absorbed in the strata called absorption stratum.
Difference between corpuscular theory and wave theory
Answer:
Explanation:
Isaac Newton argued that the geometric nature of reflection and refraction of light could only be explained if light were made of particles, referred to as corpuscles, because waves do not tend to travel in straight lines.
mention & reasons why the ability to adapt to change is
important for improvement of your quality of life.
Answer:
The ability to adapt is important because :
1) It helps in the survival of human beings.
2) It brings more variation to the human kind.
3) It helps the species from getting endangered or extinct.
4) It brings transformation in the adapting kind.
Hope this helps you☺️☺️
A 100-n object and a 50-n object are placed on scales a and b respectively inside an elevator ascending with constant velocity 3.0m/s which statement below correctly describes the readings on the scales inside the elevator
Answer: b
Explanation:
The reading of the scale of the elevator ascending with constant velocity is 150 N.
Reading of the scale
The reading of the scale on the elevaor is calculated by applying Newton's second law of motion;
R = m(a + g)
R = ma + mg
R = F + W
where;
a is the acceleration of the objectsAt constant velocity, the acceleration of the object is zero (0).
R = 0 + 100 + 50
R = 150 N
Thus, the reading of the scale of the elevator ascending with constant velocity is 150 N.
Learn more about reading of scale here: https://brainly.com/question/2516315
Question 4 of 10 A student measures the time it takes for two reactions to be completed. Reaction A is completed in 39 seconds, and reaction B is completed in 50 seconds. What can the student conclude about the rates of these reactions? A. The rate of reaction B is higher B. The rate of reaction A is higher. C. The rates of reactions A and B are equal.
Answer:
B. the rate of reaction is higher
Explanation:
Tarnish is produced by a redox reaction that occurs when a metal reacts with
a nonmetallic compound. The green tarnish on a copper penny might be
produced by a reaction between copper and hydrogen sulfide. What occurs
during this reaction?
A. Hydrogen sulfide acts as an acid, and copper acts as a base.
B. Copper atoms gain electrons from sulfur atoms.
C. A double-replacement reaction takes place.
D. Copper atoms lose electrons to sulfur atoms.
Answer:
Copper atoms lose electrons to sulfur atoms
Explanation:
a p e x (:
If the motion of B is uniformly accelerated, at what time will both graphs have
exactly the same slope? Explain.
Answer:
Im just here for the points man sorry
Explanation:
places where computers is used
Answer:
Banks and financial.
Business.
Communication.
Defense and military.
Education.
Internet.
Medical.
Transportation.
etc..
Answer:
Super markets
Hospitals
Industries
Explanation:
In supermarket's computers helps them manage and organise data .
Type the correct answer in each box. Round your answers to the nearest hundredth.
A ball with a mass of 1.5 kilograms is tied to the end of a rope. The ball is pulled to a height of 0.5 meters above the ground and released.
The ball has
joules of potential energy at position B. At position A, all of the energy changes to kinetic energy. The velocity of the ball at position A is
meters/second. Assume there’s no air resistance. Use g = 9.8 m/s2 , PE = m × g × h, and .
Hi there!
[tex]\large\boxed{PE = 7.35 J, \text{ }v \approx 3.13 m/s}[/tex]
To find the potential energy of the ball at B, we can use the equation:
PE = mgh
Plug the given gravity, mass, and height:
PE = (1.5)(0.5)(9.8) = 7.35 J
At A, all of this potential energy is changed to kinetic energy, so we can use the following equation:
v = √2KE/m
Plug in the solved for energy and mass:
v = √2(7.35)/1.5
Solve:
v ≈ 3.13 m/s
a ball rolls horizontally of the edge of the cliff at 4 m/s, if the ball lands at a distance of 30 m from the base of the vertical cliff, what is the the hight of the cliff
Answer:
Approximately [tex]281.25\; \rm m[/tex]. (Assuming that the drag on this ball is negligible, and that [tex]g = 10\; \rm m \cdot s^{-2}[/tex].)
Explanation:
Assume that the drag (air friction) on this ball is negligible. Motion of this ball during the descent:
Horizontal: no acceleration, velocity is constant (at [tex]v(\text{horizontal})[/tex] is constant throughout the descent.)Vertical: constant downward acceleration at [tex]g = 10\; \rm m \cdot s^{-2}[/tex], starting at [tex]0\; \rm m \cdot s^{-1}[/tex].The horizontal velocity of this ball is constant during the descent. The horizontal distance that the ball has travelled during the descent is also given: [tex]x(\text{horizontal}) = 30\; \rm m[/tex]. Combine these two quantities to find the duration of this descent:
[tex]\begin{aligned}t &= \frac{x(\text{horizontal})}{v(\text{horizontal})} \\ &= \frac{30\; \rm m}{4\; \rm m \cdot s^{-1}} = 7.5\; \rm s\end{aligned}[/tex].
In other words, the ball in this question start at a vertical velocity of [tex]u = 0\; \rm m \cdot s^{-1}[/tex], accelerated downwards at [tex]g = 10\; \rm m \cdot s^{-2}[/tex], and reached the ground after [tex]t = 7.5\; \rm s[/tex].
Apply the SUVAT equation [tex]\displaystyle x(\text{vertical}) = -\frac{1}{2}\, g \cdot t^{2} + v_0\cdot t[/tex] to find the vertical displacement of this ball.
[tex]\begin{aligned}& x(\text{vertical}) \\[0.5em] &= -\frac{1}{2}\, g \cdot t^{2} + v_0\cdot t\\[0.5em] &= - \frac{1}{2} \times 10\; \rm m \cdot s^{-2} \times (7.5\; \rm s)^{2} \\ & \quad \quad + 0\; \rm m \cdot s^{-1} \times 7.5\; s \\[0.5em] &= -281.25\; \rm m\end{aligned}[/tex].
In other words, the ball is [tex]281.25\; \rm m[/tex] below where it was before the descent (hence the negative sign in front of the number.) The height of this cliff would be [tex]281.25\; \rm m\![/tex].
How are rainbows made?
Answer:
when it rains and at the same time it sunny there would appear a rainbow
The energy an object possesses due to its motion
Mars can have bigger mountains than the Earth because it has a smaller mass and surface gravity.
True
False
Answer:
True
Explanation:
How much current is drawn by a television
with a resistance of 43 Ω that is connected
across a potential difference of 112 V?
Answer in units of A.
Answer:
Explanation:
v = ir
v/r = i
112/43 = i
2.60 ≈ i
Polarizing windows, filters, etc. are often used to reduce the amount of light that enters the lens of a camera or into a room or a car. A library atrium has an overhead skylight that lets in too much light during the day which heats up the interior of the library far too much. The building engineer installs new double paned polarizing sky lights to reduce the intensity. If sunlight, which is unpolarized, has an average intensity of 1250 W/m^2.
Required:
What angle should the polarizing axis of the second pane of the window make with the polarizing axis of the first pane of the window in order to reduce the intensity of the sunlight to 33% of the original value?
Answer:
The answer is "[tex]35.6^{\circ}[/tex]"
Explanation:
The sunlight level of the first panel:
[tex]I_1 = \frac{I_o}{2}[/tex]
When the light of this intensity passes through the second window:
[tex]I_2 = I_1 \cos^2 \theta\\\\I_2 = \frac{I_o}{2} \cos^2 \theta[/tex]
[tex]\frac{I_2}{I_o} = 0.33 (33\%) \\\\[/tex]
therefore,
[tex]0.33 = \frac{1}{2} \cos^2 \theta\\\\\cos^2 \theta = 0.66\\\\\cos \theta = \sqrt{0.66} = 0.8124\\\\\theta = \cos^{-1}( 0.8124) = 35.6^{\circ}\\\\[/tex]
You're an electrical engineer designing an alternator (the generator that charges a car's battery). Mechanical engineers specify a 10-cmcm-diameter rotating coil, and you determine that you can fit 250 turns in this coil. To charge a 12-VV battery, you need a peak output of 17 VV when the alternator is rotating at 1500 rpm.
What do you specify for the alternator's magnetic field?
Answer:
13.78 mT
Explanation:
The peak voltage ε = ωNAB where ω = angular speed of coil = 1500 rpm = 1500 × 2π/60 rad/s = 50π rad/s = 157.08 rad/s, N = number of turns of coil = 250, A = area of coil = πr² where r = radius of coil = 10 cm = 0.10 m,
A = π(0.1 m)² = 0.03142 m² and B = magnetic field strength
So,
B = ε/ωNA
substituting the values of the variables into the equation given that ε = 17 V
So, B = ε/ωNA
B = 17 V/(157.08 rad/s × 250 turns × 0.03142 m²)
B = 17 V/(1233.8634 rad-turns-m²/s)
B = 0.01378 T
B = 13.78 mT
En una balanza de fábrica se determina la masa de un cuerpo y se obtiene
1 M kg 280
con
un error aparente
1 1 0,5 a
M kg
. En un laboratorio, se hace lo mismo con otro cuerpo y
se determina
2 M g 23,545
con un error
2 2 0,001 a
M g .
¿Dónde se cometió mayor erro
1. The process of producing energy by utilizing heat trapped inside the earth's
surface is called
A) Hydrothermal energy
C) Solar energy
B) Geo-Thermal energy
D) Wave energy
Answer:
B
Explanation:
The process is called Geo-Thermal energy because it's an inexhaustible source of energy
These two questions are connected to the figure.
Answer:
A, and E
Explanation:
The greatest ocean depths on the Earth are found in the Marianas Trench near the Philippines. Calculate the pressure (in atm) due to the ocean at the bottom of this trench, given its depth is 10.3 km and assuming sea water density is constant all the way down. atm
Answer:
[tex]P = 103867260[/tex] atm
Explanation:
The pressure at the bottom of any liquid column is equal to product of density of the liquid , gravitational acceleration constant (g) and height of the water column
Thus, [tex]P = \rho*g*h[/tex]
Substituting the given values, we get -
[tex]P = 1029[/tex] kg/m3 [tex]* 9.8[/tex] m/s^2 [tex]*10.3 *1000[/tex] meters
[tex]P = 103867260[/tex] atm
un cubo de aluminio tiene un volumen de 45cm3 cuál es su masa en gramos
what is the wavelength of a wave with the frequency of 330 Hz and a speed of 343 m/s
Answer:
The wavelength of a wave with the frequency of 330hz and a speed of 343m/s would be 1.04m
Explanation:
You can get the wavelength of a wave by dividing the speed of the wave by its frequency, which in this case would be:
343/300, which as a decimal number, it'd be 1.04.
I hope I helped you, and a "Brainliest" is always appreciated! ☺