Answer:
Maybe when there is a fire there can be fire drones that can take it out. and it can also resuce people who are stuck there.
Explanation:
Scientists say that it takes over 50 years for trees to fully grow back after a fire. Most trees do not grow well under extreme environmental conditions.
If the climate continues to get warmer, do you think forests will be able to completely recover?
Yes
No
Explain your answer.
Answer:
no
Explanation:
How many trees would it take to reverse climate change?
1.2 trillion trees
Crowther says planting 1.2 trillion trees would give a reduction "way above" that figure. To put that in context, global CO2 emissions are around 37 billion tons per year.Apr 17, 2019
Find R subscript C and R subscript B in the following circuit such that BJT would be in the active region with V subscript C E end subscript equals 5 V and I subscript C equals 25 m A V subscript C C end subscript equals 15 space V comma space V subscript D 0 end subscript equals 0.7 space V comma space beta equals 100 comma space V subscript A equals infinity.. Ignore the early effect in biasing calculations.
Answer: Rc = 400 Ω and Rb = 57.2 kΩ
Explanation:
Given that;
VCE = 5V
VCC = 15 V
iC = 25 mA
β = 100
VD₀ = 0.7 V
taking a look at the image; at loop 1
-VCC + (i × Rc) + VCE = 0
we substitute
-15 + ( 25 × Rc) + 5 = 0
25Rc = 10
Rc = 10 / 25
Rc = 0.4 k
Rc = 0.4 × 1000
Rc = 400 Ω
iC = βib
25mA = 100(ib)
ib = 25 mA / 100
ib = 0.25 mA
ib = 0.25 × 1000
ib = 250 μAmp
Now at Loop 2
-Vcc + (ib×Rb) + VD₀ = 0
-15 (250 × Rb) + 0.7 = 0
250Rb = 15 - 0.7
250Rb = 14.3
Rb = 14.3 / 250
Rb = 0.0572 μ
Rb = 0.0572 × 1000
Rb = 57.2 kΩ
Therefore Rc = 400 Ω and Rb = 57.2 kΩ
What is the name given to the vehicles that warn motorists about oversized loads/vehicles?
a) Pilot Car
b) Advanced Car
c) Trail Car
d) Leader Car
The car that is used to warn drivers about oversized loads is the Pilot Car.
What is a Pilot Car?The Pilot Car is also called Escort Car. It is a vehicle used to warn other vehicles of the presence of an over-sized vehicle.
The role of Pilot vehicle operators is to warn road users (motorists) to be cautious of over-sized loads or vehicles.
The cars are used to guide motorists that are making use of roads in construction sites.
Read more on driving: https://brainly.com/question/4533625
What is the primer coating that protects the metal from rusting on a Aftermarket part.. Flat Primer
Primer Sealer
Shipping Primer
How do you describe sound? (SELECT ALL THAT APPLY.) PLEASE HELP AND SELECT ALL THAT APPLY PLEASE!! A. Sound waves have to have a medium to travel through. B. The volume of a sound is known as amplitude. C. Loud sounds have high amplitude and vibrate with more energy than soft sounds. D. Sound waves are compression waves that cause energy transfer in air molecules.
Answer:
Sound waves are compression waves that cause energy transfer in air molecules
Sound waves have to have a medium to travel through
Loud sounds have high amplitude and vibrate with more energy than soft sounds
Explanation:
Sound waves is a form of energy composed of compression and rare factions. Sound waves are compression waves that cause energy transfer in air molecules.
Sound is an example of a mechanical wave hence it requires a material medium for propagation.
The amplitude of a sound wave determines its loudness or volume. A larger amplitude implies that we will have a louder sound, and a smaller amplitude means that we will have a softer sound.
Problem 10.012 SI A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2.6 bar, and saturated liquid exits the condenser at 12 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
Answer:
a) 4.1 kw
b) 4.68 tons
c) 4.02
Explanation:
Saturated vapor enters compressor at ( p1 ) = 2.6 bar
Saturated liquid exits the condenser at ( p2 ) = 12 bar
Isentropic compressor efficiency = 80%
Mass flow rate = 7 kg/min
A) Determine compressor power in KW
compressor power = m ( h2 - h1 )
= 7 / 60 ( 283.71 - 248.545 )
= 4.1 kw
B) Determine refrigeration capacity in tons = m ( h1 - h4 )
= 7/60 ( 248.545 - 107.34 )
= 16.47 kw = 4.68 tons
C) coefficient of performance ( COP )
= Refrigeration capacity / compressor power
= 16.47 / 4.1 = 4.02
Attached below is the beginning part of the solution
Store the amount of the minimum loan in min_loan and the amount of the maximum loan in max_loan Then, store the name of the country that received the largest loan in max_country and the smallest loan in min_country Hint: max and min are built in Python functions that you can use to find the minimum value or maximum value in any sequence.
Answer:
See Explanation
Explanation:
The question has missing details;however, I'm able to pick the following points from the question
There's supposed to be a list of loan amountsThere's also supposed to be a list of countries that took loans. This list will correspond to the loan listHaving said that, the question can be solved in two ways.
I prompt the user to enter loan amounts and corresponding country I assume any value for the loan amounts and the countryI'll answer this question using the first method and the solution is as follows (See Comments for line by line explanation):
#This line prompt user for number of countries
n = int(input("Number of countries: "))
#This initializes an empty list for loan amounts
loan_amounts = []
#This initializes an empty list for country
country = []
#The following iteration gets names of countries and their respective loan amounts
for i in range(0,n):
country_name = input("Name of country: ")
loan = int(input("Loan Amount: "))
country.append(country_name)
loan_amounts.append(loan)
#This gets the maximum loan
max_loan = max(loan_amounts)
#This gets the index of the maximum loan
iindex = loan_amounts.index(max_loan)
#This gets the country with the maximum loan
max_country = country[iindex]
#This gets the minimum loan
min_loan = min(loan_amounts)
#This gets the index of the minimum loan
iindex = loan_amounts.index(min_loan)
#This gets the country with the minimum loan
min_country = country[iindex]
#This prints the country with the maximum loan and the loan amount
print(str(max_country)+": "+str(max_loan))
#This prints the country with the minimum loan and the loan amount
print(str(min_country)+": "+str(min_loan))
A beam of span L meters simply supported by the ends, carries a central load W. The beam section is shown in figure. If the maximum shear stress is 450 N/cm2 when the maximum bending stress is 1500 N/cm2. Calculate the value of the centrally applied point load W and the span L. The overall height of the I section is 29 cm.
Answer:
W = 11,416.6879 N
L ≈ 64.417 cm
Explanation:
The maximum shear stress, [tex]\tau_{max}[/tex], is given by the following formula;
[tex]\tau_{max} = \dfrac{W}{8 \cdot I_c \cdot t_w} \times \left (b\cdot h^2 - b\cdot h_w^2 + t_w \cdot h^2_w \right )[/tex]
[tex]t_w[/tex] = 1 cm = 0.01
h = 29 cm = 0.29 m
[tex]h_w[/tex] = 25 cm = 0.25 m
b = 15 cm = 0.15 m
[tex]I_c[/tex] = The centroidal moment of inertia
[tex]I_c = \dfrac{1}{12} \cdot \left (b \cdot h^3 - b \cdot h_w^3 + t_w \cdot h_w^3 \right )[/tex]
[tex]I_c[/tex] = 1/12*(0.15*0.29^3 - 0.15*0.25^3 + 0.01*0.25^3) = 1.2257083 × 10⁻⁴ m⁴
Substituting the known values gives;
[tex]I_c = \dfrac{1}{12} \cdot \left (0.15 \times 0.29^3 - 0.15 \times 0.25^3 + 0.01 \times 0.25^3 \right ) = 1.2257083\bar 3 \times 10^{-4}[/tex]
[tex]I_c[/tex] = 1.2257083[tex]\bar 3[/tex] × 10⁻⁴ m⁴
From which we have;
[tex]4,500,000 = \dfrac{W}{8 \times 1.225708\bar 3 \times 10 ^{-4}\times 0.01} \times \left (0.15 \times 0.29^2 - 0.15 \times 0.25^2 + 0.01 \times 0.25^2 \right )[/tex]
Which gives;
W = 11,416.6879 N
[tex]\sigma _{b.max} = \dfrac{M_c}{I_c}[/tex]
[tex]\sigma _{b.max}[/tex] = 1500 N/cm² = 15,000,000 N/m²
[tex]M_c[/tex] = 15,000,000 × 1.2257083 × 10⁻⁴ ≈ 1838.56245 N·m²
From Which we have;
[tex]M_{max} = \dfrac{W \cdot L}{4}[/tex]
[tex]L = \dfrac{4 \cdot M_{max}}{W} = \dfrac{4 \times 1838.5625}{11,416.6879} \approx 0.64417[/tex]
L ≈ 0.64417 m ≈ 64.417 cm.
An open-circuit wind tunnel draws in air from the atmosphere through a well-contoured nozzle. In the test section, where the flow is straight and nearly uniform, a static pressure tap is drilled into the tunnel wall. A manometer connected to the tap shows that static pressure within the tunnel is 45 mm of water below atmospheric. Assume that the air is incompressible, and at 25 C, 100 kPa absolute. Calculate the air speed in the wind-tunnel test section
Answer:
Air speed in the wind-tunnel [tex]v_{2}[/tex] = 27.5 m/s
Explanation:
Given data :
Manometer reading ; p1 - p2 = 45 mm of water
Pressure at section ( I ) p1 = 100 kPa ( abs )
temperature ( T1 ) = 25°C
Pw ( density of water ) = 999 kg/m3
g = 9.81 m/s^2
next we apply Bernoulli equation at section 1 and section 2
p1 - p2 = [tex]\frac{PairV^{2} _{2} }{2}[/tex] ---------- ( 1 )
considering ideal gas equation
Pair ( density of air ) = [tex]\frac{P}{RT}[/tex] ------------------- ( 2 )
R ( constant ) = 287 NM/kg.k
T = 25 + 273.15 = 298.15 k
P1 = 100 kN/m^2 = 100 * 10^3 or N/m^2
substitute values into equation ( 2 )
= 100 * 10^3 / (287 * 298.15)
= 1.17 kg/m^3
Also note ; p1 - p2 = PwgΔh ------- ( 3 )
finally calculate the Air speed in the wind-tunnel test section by equating equation ( 1 ) and ( 3 )
[tex]\frac{PairV^{2} _{2} }{2}[/tex] = PwgΔh
[tex]V^{2} _{2}[/tex] = [tex]\frac{2*999* 9.81* 0.045}{1.17}[/tex] = 753.86
[tex]v_{2}[/tex] = 27.5 m/s
Un material determinado tiene un espesor de 30 cm y una conductividad térmica (K) de 0,04 w/m°C. En un instante dado la distribución de temperatura en función de "x" el cual es la distancia desde la cara izquierda de una pared, está dado por la siguiente función: T(x) = 150x2 -30x, donde x está en metros. Calcúlese el flujo de calor por unidad de área cuando x=0 y x=30, para cada caso menciones si se está enfriando o calentando el sólido.
Answer:
Para x=0:
[tex]\phi=1.2 W/m^{2}[/tex]
Para x=30 cm:
[tex]\phi=-2.4 W/m^{2}[/tex]
Explanation
Podemos utilizar la ley de Fourier par determinar el flujo de calor:
[tex]\phi=-k\frac{dT}{dx}[/tex](1)
Por lo tanto debemos encontrar la derivada de T(x) con respecto a x primero.
Usando la ley de potencia para la derivda, tenemos:
[tex]\frac{dT(x)}{dx}=300x-30[/tex]
Remplezando esta derivada en (1):
[tex]\phi=-0.04(300x-30)[/tex]
Para x=0:
[tex]\phi=0.04(30)[/tex]
[tex]\phi=1.2 W/m^{2}[/tex]
Para x=30 cm:
[tex]\phi=-0.04(300*0.3-30)[/tex]
[tex]\phi=-2.4 W/m^{2}[/tex]
Espero que te haya ayudado!
what is heat unit?in X ray machine
Answer:
joule
Explanation:
heat is express in joules in x Ray equipment
Waste that is generated by a business is called a _____________.
A) Waste stream
B) Surplus
C) Hazard assessment
D) Trash stream
(This is for my Automotive class)
Answer:
waste stream
Explanation:
i got it right on sp2
Which of the following is a disadvantage of using a resistor in place of an inductor in a power-supply filter.
A The output DC voltage will be lower
B. The life of the capacitors will be shorter
C. A resistor will cost much more than an inductor
D. A resistor weighs much more than an inductor
Answer: A. The output DC voltage will be lower
Explanation:
Using a resistor in a power-supply filter instead of an inductor will lead to a lower DC voltage output as resistors reduce voltage.
It would therefore be ideal to use an inductor as it does not lower DC voltage but inductors are expensive and can be quite large which is why it is more common to see resistors used in power-supply filter circuits.
A battery with an f.e.m. of 12 V and negligible internal resistance is connected to a resistor of 545 How much energy is dissipated by the resistor in 65 s?
Answer:
When are resistors in series? Resistors are in series whenever the flow of charge, called the current, must flow through devices sequentially. For example, if current flows through a person holding a screwdriver and into the Earth, then
R
1
in Figure 1(a) could be the resistance of the screwdriver’s shaft,
R
2
the resistance of its handle,
R
3
the person’s body resistance, and
R
4
the resistance of her shoes.
Figure 2 shows resistors in series connected to a voltage source. It seems reasonable that the total resistance is the sum of the individual resistances, considering that the current has to pass through each resistor in sequence. (This fact would be an advantage to a person wishing to avoid an electrical shock, who could reduce the current by wearing high-resistance rubber-soled shoes. It could be a disadvantage if one of the resistances were a faulty high-resistance cord to an appliance that would reduce the operating current.)
Two electrical circuits are compared. The first one has three resistors, R sub one, R sub two, and R sub three, connected in series with a voltage source V to form a closed circuit. The first circuit is equivalent to the second circuit, which has a single resistor R sub s connected to a voltage source V. Both circuits carry a current I, which starts from the positive end of the voltage source and moves in a clockwise direction around the circuit.
Figure 2. Three resistors connected in series to a battery (left) and the equivalent single or series resistance (right).
To verify that resistances in series do indeed add, let us consider the loss of electrical power, called a voltage drop, in each resistor in Figure 2.
According to Ohm’s law, the voltage drop,
V
, across a resistor when a current flows through it is calculated using the equation
V
=
I
R
, where
I
equals the current in amps (A) and
R
is the resistance in ohms
(
Ω
)
. Another way to think of this is that
V
is the voltage necessary to make a current
I
flow through a resistance
R
.
So the voltage drop across
R
1
is
V
1
=
I
R
1
, that across
R
2
is
V
2
=
I
R
2
, and that across
R
3
is
V
3
=
I
R
3
. The sum of these voltages equals the voltage output of the source; that is,
V
=
V
1
+
V
2
+
V
3
.
This equation is based on the conservation of energy and conservation of charge. Electrical potential energy can be described by the equation
P
E
=
q
V
, where
q
is the electric charge and
V
is the voltage. Thus the energy supplied by the source is
q
V
, while that dissipated by the resistors is
q
V
1
+
q
V
2
+
q
V
3
.
Explanation:
Let be a real-valued signal for which when . Amplitude modulation is preformed to produce the signal . A proposed demodulation technique is illustrated below where is the input, is the output and the ideal low-pass filter has a cutoff frequency of and a passband gain of 2. Determine . x(t) X(jω) = 0 g(t) = x(t)sin(2000πt) g(t) y(t) 2000π y(t) EENG 311: Signals and Systems Page 7 of 8 × lowpass filter y(t) cos(2000πt) g
Answer:
hello your question is incomplete attached below is the complete question
answer : attached below
Explanation:
let ; x(t) be a real value signal for x ( jw ) = 0 , |w| > 200[tex]\pi[/tex]
g(t) = x ( t ) sin ( 2000 [tex]\pi t )[/tex]
[tex]x_{1} (t) = \frac{1}{2} x(t) sin ( 4000\pi t )[/tex]
next we apply Fourier transform
attached below is the remaining part of the solution
Thermoplastic parts are
A.commonly used for outer mirror housings.
B. commonly used for grilles
C.formed by stamping a plastic sheet in a mold
D.formed by forcing a molten solution into a mold.
Answer:
c
Explanation:
Thermoplastic parts are formed by forcing a molten solution into a mold.
Thus option D is correct.
Here,
Thermoplastic are plastic parts made from thermoplastic materials. These materials have the ability to be melted and remolded several times without undergoing any chemical change.
The thermoplastic parts are commonly used for different purposes such as in automotive industries, construction, medical, consumer goods, and much more. These parts are easily moldable and can be made into different shapes and sizes. They are also lightweight, strong, and durable, making them ideal for a wide range of applications.
They are commonly used for applications that require high strength and durability, such as in the automotive and aerospace industries.
Therefore option D is correct.
Know more about thermoplastic,
https://brainly.com/question/33512414
#SPJ6
Forcing a solid piece of heated aluminum through a die forms:
A. a stamped part
B.a cast part
C.an extruded part.
D.a forged part
Answer:
B a cast part
Explanation:
Extrusion is defined as the process of shaping material, such as aluminum, by forcing it to flow through a shaped opening in a die. Extruded material emerges as an elongated piece with the same profile as the die opening.
Forcing a solid piece of heated aluminum through a die forms: a cast part. Hence, option B is correct.
What is cast part?A liquid element is more often filled with concrete that has a hollow chamber in the correct form during the casting manufacturing process, and the item is then let to harden.
A casting, which is the term for the solidified component, is ejected or broken out of the mould to complete the procedure.
Thus, option B is correct.
For more details about cast part, click here:
https://brainly.com/question/13653319
#SPJ2
Discuss why TVET Institutions need advice of the business community in order
to provide good programmes.
Answer:
Without the indispensable advice of the business community, TVET Institutions will be unable to cover the gap in career knowledge required by the business community. To develop workers who possess the knowledge and skills required by today's business entities, there is always the continual need for the educational institutions (gown) to regularly meet the business community (town). This meeting provides the necessary ground for the institutions to develop programs that groom the workforce with skills that are needed in the current workplace. Educational institutions that do not seek this important advice from the business community risk developing workers with outdated skills.
Explanation:
TVET Institutions mean Technical and Vocational Education and Training Institutions. They play an important role in equipping young people to enter the world of work. They also continue to develop programs that will improve the employability of workers throughout their careers. They regularly respond to the changing labor market needs, adopt new training strategies and technologies, and expand the outreach of their training to current workers while grooming the young people for work.
entor" by
What type of signal word is used in this sentence?
need and
en who was
generalization
description
thought
feeling
Answer:
generalization
Explanation:
Please mark me brainliest I need to level up
Poems that focus on one image usually have what purpose? PLEASE HELP MEH!!
A. to make readers understand how one event leads to another
B. to make readers look at something in a new and different way
C. to make a point about how two or three things are alike
Answer:
A. to make readers understand how one event leads to another
Explanation:
Hope this helped have an amazing day!
Poems that focus on one image usually make readers understand how one event leads to another. The correct option is A.
What is poetry?Poetry is literature that uses words chosen and arranged for their meaning, sound, and rhythm to elicit a focused imaginative awareness of experience or a particular emotional response.
Narrative, dramatic, and lyrical poetry are the three basic categories. Sometimes it is difficult to distinguish between them.
For instance, lyrical poems can have narrative sections, just as epic poems can include lyrical passages.
Poetry is a genre of writing that is essential to life, art, and culture. Readers can typically comprehend how one occurrence leads to another in poems that concentrate on a single image.
Thus, the correct option is A.
For more details regarding poetry, visit:
https://brainly.com/question/1852007
#SPJ2
using credit reduces future income
Answer:
lol
Explanation:r