Answer:
velocity = 44.98 m/s
Explanation:
given data
velocity = 45.0 m/s
angle = 30.0 degrees
solution
first we get here time that is
time = 2u × sin θ ÷ g .............1
time = 2×45 × sin 30 ÷ 9.8
time = 4.59 sec
and
velocity = [tex]\sqrt{vx^2+vy^2}[/tex] .....................2
here
vx = 45 cos30 = 38.97 m/s
vy = uy - gt
vy = 45 sin30 - 9.8 × 4.59 = -22.48 m/s
so velocity will be
velocity = [tex]\sqrt{38.97^2+22.48^2}[/tex]
velocity = 44.98 m/s
PLEASE HELP!!
1.The Law of Conservation of Energy states that?
A. matter cannot be created or destroyed, only stored and transferred.
B. momentum cannot be created or destroyed, only stored and transferred.
C. energy cannot be created or destroyed, only stored and transferred.
2.The total amount of kinetic and potential energy in a system that remains constant is the system's
A .mechanical energy
B. elastic energy
C. chemical energy
D. gravitational energy
3, At the top of a giant hill sits a roller coaster cart, all the energy of the cart is stored as
A. kinetic energy
B. chemical energy
C. elastic energy
D. gravitational potential energy
4. At the bottom of the hill (ground level), the roller coaster cart in the previous problem, all the energy of the cart is stored as
A. kinetic energy
B. chemical energy
C. elastic energy
D. gravitational potential energy
When a pendulum swings when will the potential energy be at a maximum?
A
B
C
D
6. If total mechanical energy = kinetic energy + potential energy, TME = KE + PE, and a roller coaster has 500 J of total mechanical energy. At the very beginning of the track the roller coaster has 500 J of potential energy, how much kinetic energy is there at the beginning of the track?
A 25 kg child is sitting at the top of a 4 m tall slide, what is his potential energy?
It the same child has a velocity of 2 m/s half-way down the slide, what is his kinetic energy?
If the TME energy for the same child on the slide is 100 J, how much potential energy does the child have half-way down the slide?
Answer:
A
A
D
D
when the pendulum is at the lefend and right end.
0 because kinetic energy is only formed when a moving object is moving.
dont know the others sorry
Explanation:
i got about half way for you hope it correct
give me nothing if you got some wrong!
or just give me a message saying that i didn't help
1. An 80-kg quarterback jumps straight up in the air right before throwing a 0.43-kg football horizontally at 15 m/s. How fast will he be moving backward just after releasing the ball?2. Which of the following best describes why you can analyze this event using conservation of momentum?A. The throwing action is quick enough that external forces may be ignored.B. External forces don't act on the system during the jump.C. Conservation of momentum is always the best way to analyze motion.
Answer:
1) 0.0806 m/s
2) External forces don't act on the system during the jump
Explanation:
velocity of ball ( Vbf )= 15 m/s
mass of quarter back ( Mq )= 80 kg
mass of football ( Mb ) = 0.43 kg
A) How fast will be be moving backward just after releasing the ball
we can determine this speed with the use of conservation of momentum equation
= Mb ( Vbf - Vbi ) = Mq ( Vq )
where Vq = Mb ( Vbf - Vbi ) / Mq
= 0.43 ( 15 m/s - 0 ) / 80 kg
= 0.0806 m/s
B) External forces don't act on the system during the jump
How does the moon cause tides?
Answer:
High and low tides are caused by the Moon. The Moon's gravitational pull generates something called the tidal force. The tidal force causes Earth—and its water—to bulge out on the side closest to the Moon and the side farthest from the Moon. These bulges of water are high tides.
Explanation:
Question 4
Why do some competitive swimmers shave their heads and bodies?
А
To decrease weight
B.
to increaase blood flow
C
to decrease friction
D
to increase buoyancy
Answer:
C
Explanation:
Consider a one-dimensional crystal (similar to a carbon nanowire) with length 10 um and lattice spacing 0.1 nm.
RequireD:
a. What is the Fermi level assuming one electron per atom?
b. What is the density of states as a function of electron energy?
Answer:
a) Fermi level = 600 electron-volts
b) [tex]\frac{2.04 * 10^{13} }{\sqrt{E} }[/tex]
Explanation:
Given data:
length of one-dimensional crystal = 10 um
Lattice spacing = 0.1 nm
A) Determine the Fermi level assuming one electron per atom
Total length = 10 um
Interatomic separation of a = 0.1 nm
in this case the Atom has one electron therefore the number of electrons = 10^5 and the number of states Ns = gsN = 2 * 10^5 ( attached below is some part of the solution )
hence : Fermi level = 600 electron-volts
B) Determine the density of states as a function of electron energy
attached below is the detailed solution
Two satellites are in orbit around a planet. One satellite has an orbital radius of 8.0×1 0 6 m. The period of revolution for this satellite is 1.0×1 0 6 s. The other satellite has an orbital radius of 2.0×1 0 7 m. What is this satellite’s period of revolution?
This question involves the concept of the orbital period.
The period of revolution of the second satellite is "3.95 x 10⁶ s".
ORBITAL PERIODFirst, we will consider the orbital period of the first satellite:
[tex]T_1=\sqrt{\frac{4\pi^2 r_1^3}{GM}}[/tex]
where,
T₁ = orbital period of frirst satellite = 1 x 10⁶ sr₁ = orbital radius for first satellite = 8 x 10⁶ mM = mass of planet = ?G = Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²Therefore,
[tex]1\ x\ 10^6\ s=\sqrt{\frac{4\pi^2(8\ x\ 10^6\ m)^3}{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(M)}}\\\\M = \frac{4\pi^2(8\ x\ 10^6\ m)^3}{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(1\ x\ 10^6\ s)^2}\\\\M = 3.03\ x\ 10^{20}\ kg[/tex]
Now, we find out the orbital period of the second satellite:
[tex]T_2=\sqrt{\frac{4\pi^2 r_2^3}{GM}}[/tex]
where,
T₂ = orbital period of second satellite = ?r₁ = orbital radius for second satellite = 2 x 10⁷ mTherefore,
[tex]T_2=\sqrt{\frac{4\pi^2(2\ x\ 10^7\ m)^3}{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(3.03\ x\ 10^{20}\ kg)}}[/tex]
T₂ = 3.95 x 10⁶ s
Learn more about the orbital period here:
https://brainly.com/question/9708010
Referring to the sketch of a planet around the sun, Area A is three times that of Area B. Compare the times required for the planet to travel from Point 1 to Point 2 and from Point 3 to Point 4 and select the letter of the correct answer.
Answer:
tA is three times tB
Explanation:
tA is three times tB
Referring to the sketch of a planet around the sun, Area A is three times that of Area B. Compare the times required for the planet to travel from Point 1 to Point 2 and from Point 3 to Point 4 and select the letter of the correct answer.
Three beakers are of identical shape and size , one beaker is pained matt black, one is dull white and one is gloss white . The beakers are filled with boiling waterin which beaker does the water cool more quickly? Give reason. ( i really need the answer quickly)
Answer:
The beaker that is matt black heats more quickly because black attracts more heat.
Explanation:
Three beakers are of identical shape and size, one beaker is pained matt black, one is dull white and one is gloss white . The beakers are filled with boiling water. The water in the matt black beaker cools more quickly.
The rate of cooling of an object is influenced by its surface properties and color. In this case, the matt black beaker will cool the water more quickly compared to the dull white and gloss white beakers.
The reason behind this lies in the concept of thermal radiation. Darker colors, such as matt black, absorb and emit thermal radiation more efficiently than lighter colors. When the boiling water is placed in the matt black beaker, the black surface absorbs a greater amount of thermal radiation from the water and its surroundings. This increased absorption accelerates the transfer of heat energy from the water to the beaker, leading to faster cooling.
On the other hand, the dull white and gloss white beakers reflect more thermal radiation, absorbing and emitting less heat. As a result, the water in these beakers cools at a slower rate compared to the matt black beaker.
To know more about beakers , click here.
https://brainly.com/question/29680414
#SPJ2
An object in motion, will tend to remain in motion until acted upon my an external, unbalanced force is defined to be
Answer:
The first law states that a body at rest will stay at rest until a net external force acts upon it and that a body in motion will remain in motion at a constant velocity until acted on by a net external force. Inertia is the tendency of a body in motion to remain in motion.
Explanation:
A 5.0 kg hammer strikes a 0.25 kg nail with a force of 10.0 N causing the nail to accelerate at 40.0 m/s^2. What is the acceleration of the hammar?
Answer:
2 m/s².
Explanation:
The following data were obtained from the question:
Mass (m) of hammer = 5 Kg
Mass (m) of nail = 0.25 kg
Force (F) applied = 10 N
Acceleration (a) of nail = 40 m/s².
Acceleration (a) of hammer =?
From Newton's third law which states that to every action, there is an equal but opposite reaction. This implies that the force applied by the hammer on the nail is exactly the force applied by the nail on the hammer. Thus, we can obtain the acceleration of the hammer as follow:
Mass (m) of hammer = 5 Kg
Force (F) applied = 10 N
Acceleration (a) of hammer =?
F = ma
10 = 5 × a
Divide both side by 5
a = 10/5
a = 2 m/s²
Thus, the acceleration of the hammer is 2 m/s².
A force of 35.0 N is required to start a 6.0-kg box movingacross a horizontal concrete floor. (a) What is the coefficientof static friction between the box and the floor?(b) if the 35.0-n force continues, the box accelerates at 0.60 m/s2 . What is the coefficient of kinetic friction.
Answer:
Explanation:
Frictional force acting on the box = 35 N
If μ₁ be the coefficient of static friction and μ₂ be the kinetic friction
μ₁ mg = 35
μ₁ = 35 / 6 x 9.8
= .6
b )
net force acting on box to produce acceleration of .6 m /s²
= 6 x .6 = 3.6 N
net force acting on the box when it is accelerating
= 35 - μ₂ mg
35 - μ₂ x 6 x 9.8 = 3.6
35 - μ₂ x 58.8 = 3.6
μ₂ = .53
A 4.00-kg mass and a 9.00-kg mass are being held at rest against a compressed spring on a frictionless surface. When the masses are released, the 4.00-kg mass moves to the east with a speed of 2.00 m/s. What is the velocity of the 9.00-kg mass after the masses are released?
A) 0.500 m/s east
B) 0.500 m/s west
C) 4.50 m/s west
D) 0.888 m/s west
E) 2.00 m/s west
Answer:
B) 0.500 m/s West
brainlist answer
The nearpoint of an eye is 151 cm. A corrective lens is to be used to allow this eye to clearly focus on objects 25 cm in front of it.
Part 1) What should be the focal length of this lens?
Answer in units of cm.
Part 2) What is the power of the needed corrective lens?Answer in units of diopters.
Answer:
a) 0.3 m
b) 3.3 diopters
Explanation:
Given that
Object distance is 26cm from the eye.
Image distance is 105 cm
From the above, we will use the formula
1/f = 1/v + 1/u
where
f is the focal length of the lens,
v is the image distance,
u is the object distance.
Since the image is a virtual image, we will give our v a negative sign. So, on calculating, we have
1/f = 1/25 - 1/151
1/f = 0.0333
f = 1/0.0333
f = 30.03 cm
f = 0.3 m
b) The power of the needed corrective lens is the reciprocal of the focal length in metres;
1/0.3 = 3.3 diopters
This is usually in diopters
For crystal diffraction experiments, wavelengths on the order of 0.25 nm are often appropriate.
A) Find the energy in electron volts for a particle with this wavelength if the particle is a photon.
B) Find the energy in electron volts for a particle with this wavelength if the particle is an electron.
C) Find the energy in electron volts for a particle with this wavelength if the particle is an alpha particle (m=6.64×10−27kg).
Answer:
A) E = 4.96 x 10³ eV
B) E = 4.19 x 10⁴ eV
C) E = 3.73 x 10⁹ eV
Explanation:
A)
For photon energy is given as:
[tex]E = hv[/tex]
[tex]E = \frac{hc}{\lambda}[/tex]
where,
E = energy of photon = ?
h = 6.625 x 10⁻³⁴ J.s
λ = wavelength = 0.25 nm = 0.25 x 10⁻⁹ m
Therefore,
[tex]E = \frac{(6.625 x 10^{-34} J.s)(3 x 10^8 m/s)}{0.25 x 10^{-9} m}[/tex]
[tex]E = (7.95 x 10^{-16} J)(\frac{1 eV}{1.6 x 10^{-19} J})[/tex]
E = 4.96 x 10³ eV
B)
The energy of a particle at rest is given as:
[tex]E = m_{0}c^2[/tex]
where,
E = Energy of electron = ?
m₀ = rest mass of electron = 9.1 x 10⁻³¹ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,
[tex]E = (9.1 x 10^{-31} kg)(3 x 10^8 m/s)^2\\[/tex]
[tex]E = (8.19 x 10^{-14} J)(\frac{1 eV}{1.6 x 10^{-19} J})\\[/tex]
E = 4.19 x 10⁴ eV
C)
The energy of a particle at rest is given as:
[tex]E = m_{0}c^2[/tex]
where,
E = Energy of alpha particle = ?
m₀ = rest mass of alpha particle = 6.64 x 10⁻²⁷ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,
[tex]E = (6.64 x 10^{-27} kg)(3 x 10^8 m/s)^2\\[/tex]
[tex]E = (5.97 x 10^{-10} J)(\frac{1 eV}{1.6 x 10^{-19} J})\\[/tex]
E = 3.73 x 10⁹ eV
A) The energy in electron volts for a particle with this wavelength if the particle is a photon is; .E = 4969.5 eV or 4.9695 keV
B) The energy in electron volts for a particle with this wavelength if the particle is an electron is; E = 23.58 eV
C) E = 0.003306 eV
A) The formula for the energy here is;
E = hc/λ
where;
h is planck's constant = 6.626 × 10⁻³⁴ J.s
c is speed of light = 3 × 10⁸ m/s
λ is wavelength = 0.25 nm = 0.25 x 10⁻⁹ m
Thus;
E = (6.626 × 10⁻³⁴ × 3 × 10⁸)/(0.25 x 10⁻⁹)
79.512 × 10⁻¹⁷ J
converting to eV gives;
E = (79.512 × 10⁻¹⁷)/(1.6 × 10⁻¹⁹)
E = 4969.5 eV or 4.9695 keV
B) Formula for the energy if the particle is an electron is;
E = h²/(2mλ²)
where m = 9.31 × 10⁻³¹ kg
E = (6.626 × 10⁻³⁴)²/(2 × 9.31 × 10⁻³¹ × (0.25 x 10⁻⁹)²)
E = 37.726 × 10⁻¹⁹ J
Converting to eV gives;
E = (37.726 × 10⁻¹⁹)/(1.6 × 10⁻¹⁹)
E = 23.58 eV
C) Mass of alpha particle is; m = 6.64 × 10⁻²⁷ kg
E = h²/(2mλ²)
where m = 6.64 × 10⁻²⁷ kg
E = (6.626 × 10⁻³⁴)²/(2 × 6.64 × 10⁻²⁷ × (0.25 x 10⁻⁹)²)
E = 52.896 × 10⁻²³ J
Converting to eV gives;
E = (52.896 × 10⁻²³)/(1.6 × 10⁻¹⁹)
E = 0.003306 eV
Read more at; https://brainly.com/question/17190856
A child wants to throw a rock upward to try to strike a plump apple up in a
tree. If the fastest the child can throw the rock is 7 m/s, what is the highest
the apple can be in order for the child to be able to strike the apple?
Answer:
7m because that is the height that the child can throw.
A 1.65 kg mass stretches a vertical spring 0.260 m If the spring is stretched an additional 0.130 m and released, how long does it take to reach the (new) equilibrium position again?
Answer:
The system will take approximately 0.255 seconds to reach the (new) equilibrium position.
Explanation:
We notice that block-spring system depicts a Simple Harmonic Motion, whose equation of motion is:
[tex]y(t) = A\cdot \cos \left(\sqrt{\frac{k}{m} }\cdot t +\phi\right)[/tex] (1)
Where:
[tex]y(t)[/tex] - Position of the mass as a function of time, measured in meters.
[tex]A[/tex] - Amplitude, measured in meters.
[tex]k[/tex] - Spring constant, measured in newtons per meter.
[tex]m[/tex] - Mass of the block, measured in kilograms.
[tex]t[/tex] - Time, measured in seconds.
[tex]\phi[/tex] - Phase, measured in radians.
The spring is now calculated by Hooke's Law, that is:
[tex]k = \frac{m\cdot g}{\Delta y}[/tex] (2)
Where:
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]\Delta y[/tex] - Deformation of the spring due to gravity, measured in meters.
If we know that [tex]m=1.65\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]\Delta y = 0.260\,m[/tex], then the spring constant is:
[tex]k = \frac{(1.65\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}{0.260\,m}[/tex]
[tex]k = 62.237\,\frac{N}{m}[/tex]
If we know that [tex]A = 0.130\,m[/tex], [tex]k = 62.237\,\frac{N}{m}[/tex], [tex]m=1.65\,kg[/tex], [tex]x(t) = 0\,m[/tex] and [tex]\phi = 0\,rad[/tex], then (1) is reduced into this form:
[tex]0.130\cdot \cos (6.142\cdot t)=0[/tex] (1)
And now we solve for [tex]t[/tex]. Given that cosine is a periodic function, we are only interested in the least value of [tex]t[/tex] such that mass reaches equilibrium position. Then:
[tex]\cos (6.142\cdot t) = 0[/tex]
[tex]6.142\cdot t = \cos^{-1} 0[/tex]
[tex]t = \frac{1}{6.142}\cdot \left(\frac{\pi}{2} \right)\,s[/tex]
[tex]t \approx 0.255\,s[/tex]
The system will take approximately 0.255 seconds to reach the (new) equilibrium position.
The time taken for the spring to reach new equilibrium position is 0.26 s.
The given parameters;
mass, m = 1.65 kgextension of the string, x = 0.26 mdisplacement with time x(t) = 0.13The general wave equation is given as;
[tex]y(t) = A\ cos(\omega t \ + \phi)[/tex]
The angular frequency is given as follows;
[tex]\omega = \sqrt{\frac{k}{m} } \\\\[/tex]
The spring constant is calculated as;
[tex]F = mg\\\\kx = mg\\\\k = \frac{mg}{x} \\\\k = \frac{1.65 \times 9.8}{0.26} \\\\k = 62.2 \ N/m[/tex]
The angular frequency is calculated as follows;
[tex]\omega = \sqrt{\frac{k}{m} } \\\\\omega = \sqrt{\frac{62.2}{1.65} }\\\\\omega = 6.14 \ rad/s[/tex]
The time taken for the spring to reach new equilibrium position is calculated as follows;
[tex]y(t) = A \ cos(\omega t)\\\\0 = 0.13 \times cos(6.14t)\\\\6.14t = cos^{-1}(0)\\\\6.14t = 1.57 \ rad\\\\t = \frac{1.57 \ rad}{6.14 \ rad/s} \\\\t = 0.26 \ s[/tex]
Thus, the time taken for the spring to reach new equilibrium position is 0.26 s.
Learn more here:https://brainly.com/question/14565505
In a liquid metal fast breeder reactor, no neutron moderation is desired and sodium is used as a coolant to minimize fission-neutron thermalization. How many elastic scatters with sodium, on the average, would it take for 2-MeV neutrons to reach an average thermal energy of 0.025 eV?
Answer:
219 scatterings
Explanation:
Given that:
The Coolant used In the liquid metal fast breed reactor = Sodium
The atomic weight (A) of sodium = 23
The initial energy [tex]E_{i}[/tex] = 2 - MeV
The final energy [tex]E_{f}[/tex] = 0.025 eV (thermal energy)
The number of elastic neutron scatterings (n) needed to reach the given average thermal energy can be computed as:
[tex]n = \dfrac{log \bigg(\dfrac{E_f}{E_i} \bigg)}{log \bigg [ \dfrac{A^2+1}{(A+1)^2} \bigg]}[/tex]
[tex]n = \dfrac{log \bigg(\dfrac{0.025}{2 \times 10^6} \bigg)}{log \bigg [ \dfrac{23^2+1}{(23+1)^2} \bigg]}[/tex]
[tex]n = \dfrac{log \bigg(1.25\times 10^{-8} \bigg)}{log \bigg [ 0.92014\bigg]}[/tex]
[tex]n = 218.643[/tex]
n ≅ 219 scatterings
Which symbol and unit of measurement are used for the electric current?
symbol: A; unit: I
symbol: C; unit: A
symbol: I; unit: C
symbol: I; unit: A
Answer:
Symbol: I unit: A
Explanation:
the formula for current is I = v/r
I: Current
V: voltage
R; Resistance
Symbol and unit of measurement are used for the electric current are symbol: I; unit: A
What is electric current ?"Electric Current is the rate of flow of electrons in a conductor. The SI Unit of electric current is the Ampere. Electrons are minute particles that exist within the molecular structure of a substance. Sometimes, these electrons are tightly held, and the other times they are loosely held."
Know more about electric current here
https://brainly.com/question/2264542
#SPJ2
The aurora borealis is caused by the ____.
A. mesosphere
B. stratosphere
c. thermosphere
D. troposphere
Answer: ionosphere
Explanation: aurora boreal is is caused by the ionosphere which is a part of the thermosphere
If Batman jumps off a 50 m tall building at 30m/s to save a civilian...
a) How long does it take him to reach the civilian?
b) How far from the bottom of the building does he go?
Answer:
Use
[tex]t = \: \sqrt{2h \div g } [/tex]
[tex]x = u \times \sqrt{2h \div g} [/tex]
if an object travels at constant speed in a circular path the acceleration of the object is
Answer:
centripetal and of constant magnitude
Explanation:
The acceleration of an object traveling on a circular path at constant speed is directed towards the center of the circle (centripetal) and of constant magnitude equal to the square of the object's speed divided by the radius of the circle.
Two light bulbs have resistances of 400Ω and 800Ω. The two light bulbs are now connected in parallel across the 120-V line. A. Find the current through each bulb.B. Find the power dissipated in each bulb. C. Find the total power dissipated in both bulbs.
Answer:
a.) O.3A and 0.15A
b.) P1 = 36W, P2 = 18W
c.) 54W
Explanation:
Constant resistance R1 = 400 ohms, R2 = 800 ohms
a.)
The current through each bulb
While in parallel.
I = 120/800/3
= 0.45A
For 400= 800/400+800
= 800/1200 x 0.45
= 0.3A
I-800 = 400 /400+800
= 400/1200*0.45
= 0.15A
B.)
The power dissipated in each bulb
P409 = I²400r
= 0.3A²x400 ohms
= 36 W
P800 = I²800R
= 0.15A²*800 ohms
= 18W
C.)
The total power dissipated
= 36W + 18 W
= 54W
A particular radiograph was produced using 6 mAs and 110 kVp with an 8:1 ratio grid. The radiograph is to be repeated using a 16:1 ratio grid. What should be the new mAs?
(A) 3 mAs
(B) 6 mAs
(C) 9 mAs
(D) 12 mAs
Answer:
(C) 9 mAs
Explanation:
The computation of the new mAs is shown below:
Let us assume the New mAs be x
For adjusting the factors of exposure basically we compared the old one with the new one i.e. presented below:
6 ÷ x = 4 ÷ 6
where
6 = old mAs
4 = old grid factor
x = new mas
6 = new grid factor
Now solve this above equation with the help of cross multiplication
4x = 36
x = 9 mAs
Here we used the 16:1 ratio grid
Hence, the correct option is C. 9 mAs
A 0.208 kg particle with an initial velocity of 1.26 m/s is accelerated by a constant force of 0.766 N over a distance of 0.195 m. Use the concept of energy to determine the final velocity of the particle. (It is useful to double-check your answer by also solving the problem using Newton's Laws and the kinematic equations.)
Answer:
Explanation:
Initial kinetic energy of particle
= 1/2 m V²
= .5 x .208 x 1.26²
= .165 J
Work done by force = force x displacement
= .766 x .195
= .149 J
This energy will be added up .
Total final kinetic energy
= initial kinetic energy + work done on the particle
= .165 + .149 J
= .314 J .
A 5 kg rock is dropped down a vertical mine shaft. How long does it take to reach the bottom, 79 meters below?
Answer:
The time for the rock to reach the bottom is 4.02 seconds.
Explanation:
Given;
mass of the rock, m = 5 kg
height of the rock fall, h = 79 meters
The time to drop to the given height is given by;
[tex]t = \sqrt{\frac{2h}{g} }[/tex]
where;
t is the time to fall to the bottom
g is acceleration due to gravity = 9.8 m/s²
[tex]t = \sqrt{\frac{2h}{g} } \\\\t = \sqrt{\frac{2*79}{9.8} }\\\\t = 4.02 \ s[/tex]
Therefore, the time for the rock to reach the bottom is 4.02 seconds.
For an investigation a student records data about four unknown substances.
data, for, unknown, substances, substance, mass, grams, volume, centimeters, cubed, density, grams, per, centimeter, cubed, 1, 6.95, 4.0, 2, 4.54, 2.0, 3, 5.40, 3.0, 4, 10.35, 5.0,
The student then calculates the densities of the unknown substances and compares them with the table of densities of known substances shown below.
densities, of, some, known, substances, substance, density, grams, per, centimeter, cubed, calcium, 1.54, carbon, 2.27, magnesium, 1.74, phosphorus, 1.82, platinum, 21.46, sulfur, 2.07,
Which unknown substance is most likely carbon?
Answer:
omparing the values of the strung density, the one that is closest to carbon is number 2
Explanation:
In this exercise we are given the mass and volume of a body, we are asked to calculate the density, using the equation
ρ = m / V
in the third and fourth column of the table is the density and the substance with the closest value
# mass volume density material
(gr) (cm³) (gr/cm³)
1 6.95 4.0 1.74 magnesium
2 4.54 2.0 2.27 carbon
3 5.40 3.0 1.80 phosphorus
4 10.35 5.0 2.07 sulfur
When comparing the values of the strung density, the one that is closest to carbon is number 2
The acceleration due to gravity on Jupiter is 23.1 m/s2, which is about twice the acceleration due to gravity on Neptune.
Which statement accurately compares the weight of an object on these two planets?
An object weighs about one-fourth as much on Jupiter as on Neptune.
An object weighs about one-half as much on Jupiter as on Neptune.
An object weighs about two times as much on Jupiter as on Neptune.
An object weighs about four times as much on Jupiter as on Neptune.
Answer:
I believe its C
Explanation:
Answer:
C-An object weighs about two times as much on Jupiter as on Neptune.
Explanation:
on edg
6) There are two reactants in a chemical equation, and one product. The mass of the product is 40g. The mass of the first reactant is 16g. What must the mass of the second reactant be, if the equation is to follow the law of conservation of mass?
Answer:
24g
Explanation:
mass of the product is 40g.
The mass of the first reactant is 16g
The mass of the second reactant = ?
Let the first reactant = A
Let the second reactant = B
Let the product = C
Equation of reaction;
A + B → C
16g 40g
The mass of B must be = 40 -16 = 24g
mention three features of the Constitution and a note about them
Answer:
Explanation:(1) a constitution is a supreme law of the land, (2) a constitution is a framework for government; (3) a constitution is a legitimate way to grant and limit powers of government officials. Constitutional law is distinguished from statutory law.
Steven tries to sneak a look into the freezer to see what kind of ice cream cake he will be eating for his birthday tomorrow. Which of the following best describes what is happening when Steven opens the freezer door right before his dad catches him?
A-Heat energy flows from the kitchen to the freezer
B-Heat energy flows from the freezer to the kitchen
C- Cold energy flows from the kitchen into the freezer
D- Cold energy flows from the freezer into the kitchen