Answer:
S = 40.8m
Explanation:
Given the following data;
Initial velocity, u = 2m/s
Acceleration, a = 1.6m/s²
Time, t = 6secs
Required to find the displacement
Displacement, S = ?
The displacement of an object is given by the second equation of motion;
[tex] S = ut + \frac {1}{2}at^{2}[/tex]
Where;
S represents the displacement measured in meters. u represents the initial velocity measured in meters per seconds. t represents the time measured in seconds. a represents acceleration measured in meters per seconds square.Substituting into the equation, we have;
[tex] S = 2*6 + \frac {1}{2}*(1.6)*6^{2}[/tex]
[tex] S = 12 + 0.8*36[/tex]
[tex] S = 12 + 28.8 [/tex]
S = 40.8m
Therefore, the displacement of the skateboarder during this game is 40.8 meters.
An airplane with a mass of 5,000 kg needs to accelerate 5 m/s2 to take off before it reaches the end of the runway. How much force is needed from the engine
Answer:
25000 NExplanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 5000 × 5
We have the final answer as
25000 NHope this helps you
A boy pulls his 9.0 kg sled, applying a horizontal force of 14.0 N (rightward). The coefficient of friction between the snow and the sled is 0.12. Determine the net force and the acceleration of the sled. Draw a free-body diagram for the sled; use appropriate force symbols to label the type of each force acting on the sled.
Here is the answer, dud
anybody wanna play among us?
Answer:
yess
Explanation:
Answer:
yes me
mark me brainliestMaria wrote the following steps in the formation of igneous rocks. Step 1: Rocks pushed under Earth due to movement of tectonic plate Step 2: Rocks melt Step 3: Molten rocks are heated Step 4: Rocks solidify Which step contains an error?
Answer:
Step 1: Rocks pushed under Earth due to movement of tectonic plate
Step 2: Molten rocks are heated
Step 3: Rocks melt
Step 4: Rocks solidify
Explanation:
Step 1: Rocks pushed under Earth due to movement of tectonic plate
Step 2: Rocks melt
Step 3: Molten rocks are heated
Step 4: Rocks solidify
In the formation of igneous rocks, rocks are pushed under the earth due to the movement of tectonic plate.
As the rocks are pulled beneath the crust, they are heated and begin to melt to form magma.
Then, with time, the magma solidify to form an igneous rock.
Step 2 is wrong.
Step 3 should come first
Step 1: Rocks pushed under Earth due to movement of tectonic plate
Step 2: Molten rocks are heated
Step 3: Rocks melt
Step 4: Rocks solidify
A 12-volt battery maintains a 4.5A current through a resistor. What is the resistance of the resistor.
If the sound source is moving then the pitch of the sound will ___________________ to the observer.
Answer:
Increase
Explanation:
The frequency of sound determines the sound. If the frequency is lower the pitch will be lower. If the frequency is higher the pitch will be higher. This is affected by the motion of the sound source because when a sound source is moving faster the frequency will become higher.
An object falling from a great height in Earth's atmosphere eventually reaches a speed called Terminal velocity. What cause a falling object to stop increasing in speed once it reaches terminal velocity? Really struggling, I need an answer--quick. Which letter is correct and why please?
A. Its mass and weight have become equal
B. It has no more potential energy
C. No forces are acting on it any longer
D. The forces acting on it are balanced
Answer:
A.
Explanation:
If its at a height the Gratitude of it falling down with only Gravity if Any other Forces are acting on it so as Friction But Sideways.
What happens to the gravitational potential energy between two particles if the distance between them is halved? (a) It does not change(b) It is multiplied by 2(c) It is multiplied by 4(d) It is multiplied by 8What happens to the gravitational force between two particles if the distance between them is doubled? (a) It does not change(b) It decreases by a factor of 2(c) It decreases by a factor of 4(d) It decreases by a factor of 8
Answer:
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).
Explanation:
The gravitational force is the force of mutual attraction that two objects with mass experience.
The Law of Universal Gravitation enunciated by Newton says that every material particle attracts any other material particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distance that separates them. Mathematically this is expressed as:
[tex]F=G*\frac{m1*m2}{r^{2} }[/tex]
where m1 and m2 are the masses of the objects, r the distance between them and G a universal constant that receives the name of constant of gravitation.
If the distance between two particles is reduced by half, then, where F' is the new value of the gravitational force:
[tex]F'=G*\frac{m1*m2}{(\frac{r}{2} )^{2} }[/tex]
[tex]F'=G*\frac{m1*m2}{\frac{(r )^{2} }{2^{2} } }[/tex]
[tex]F'=G*\frac{m1*m2}{\frac{(r )^{2} }{4} }[/tex]
[tex]F'=4*G*\frac{m1*m2}{r^{2} }[/tex]
F'=4*F
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).
For mechanical waves, such as sound waves or ocean waves, increasing the intensity of the wave increases both the amplitude (height) of the wave and the energy it carries. In that situation, a low-frequency but high-intensity wave should have the same effect as a high-frequency but low-intensity wave. How does light behave differently from this model?
Answer:
the effect is given by the energy that depends on the frequency, but not on the intensity
Explanation:
There are similarities and differences between mechanical waves and electromagnetic waves. The main difference is that mechanical waves depend on a material medium for their propagation, whereas electromagnetic waves are maintained by the oscillation of their electrical magnetoscope fields.
In the case of light (electromagnetic wave) the energy is given by the relation
E = h f
where h is Planck's constant and f is the frequency.
Then the intensity is given by the number of waves or quasiparticles (photons) that are in the ray.
Consequently the effect is given by the energy that depends on the frequency, but not on the intensity
The energy in the given model depends on the frequency, but not on the intensity.
The given problem is based on the mechanical wave and electromagnetic waves. The mechanical waves depend on a material medium for their propagation, whereas electromagnetic waves are maintained by the oscillation of their electrical magneto scope fields.
In the case of light (electromagnetic wave) the energy is given by the relation,
E = h f
Here,
h is Planck's constant.
And f is the frequency.
Then the intensity is given by the number of waves (photons) that are in the ray. So, it is evident the effect is given by the energy that depends on the frequency, but not on the intensity.
Thus, we can conclude that the energy in the given model depends on the frequency, but not on the intensity.
Learn more about the intensity of wave here:
https://brainly.com/question/14697045
1) An object travels 15 m in 3 s. What is its' speed?
Answer:
5m/s
Explanation:
Distance/Time= Speed
D/T=S
15/3=S
5=S
6. Which of the following types of energy is not lost when energy is
transferred between one of the Earth's four physical systems?*
heat
light
sound
nuclear
vibration
movement
Answer:
heat light sound viberation
Explanation:
i'm built different
The frequency of an electromagnetic wave is 1.0 x 105 Hz. Calculate the wavelength in meters. Show your work,
and be sure to keep track of the units.
Answer:
wavelength = 3000 m
Explanation:
We use the formula for the relationship between the speed (c), frequency (v), and wavelength [tex](\lambda)[/tex]:
[tex]c=\lambda\,*\,\nu\\300000000 \,\,m/s = \lambda\,*100000 \,\,1/s\\\lambda \,=\,3000\,\,m[/tex]
Try to move the magnet back and forth between the two coils. Explain the motion of the magnet and what might be causing this.
Answer:
Please find the answer in the explanation.
Explanation:
When you try to move the magnet back and forth between the two coils, the motion of the magnet will be oscillatory and this action will cause current and EMF to induce
According to law of Faraday, current or EMF will be induced when a magnet is moved in the presence of coils
If the magnet continues to move back and forth between the two coils, what might be causing this will be the presence of the induced electromagnetic force between the two coils.
hii i need these answers please!! as soon as possible and if you can’t see anything jus let me know and ill tell you what it says
Answer:
Explanation:
CANT SEE ITS TOO PIXELATED
A squirrel falls from this tree after being shocked by the falling apples. If the
squirrel was 3.5 meters above the ground, how long until the squirrel hits the
ground?
Answer:
0.85m
Explanation:
Given parameters:
Height of fall = 3.5m
Unknown:
Duration of fall = ?
Solution:
To solve this problem, we apply the right motion equation.
Since we know the height, we can use the equation below;
S = ut + [tex]\frac{1}{2} gt^{2}[/tex]
S is the height
u is the initial velocity = 0m/s
t is the time
g is the acceleration due to gravity
3.5 = 0 + [tex]\frac{1}{2}[/tex] x 9.8 x t²
3.5 = 4.9t²
t² = [tex]\frac{3.5}{4.9}[/tex]
t² = 0.71
t = √0.71 = 0.85m
The towel has better blank
than that towel.
A.duplication
B.formation
C.qualification
D.absorption
Answer:
D
Explanation:
Towels Absorb
1.
How does centripetal force due to gravity keep a satellite in orbit?
It continuously changes the direction of the satellite.
It provides the thrust to launch the satellite into space.
It prevents the satellite from falling toward Earth.
It keeps increasing the speed of the satellite.
Answer:
1st one,.
It changes the direction,
And satellite falls in earth infinity,
Its total workdone is zero
Answer:
It continuously changes the direction of the satellite.
Explanation:
our Welcome (; (:
An ideal transformer has 60 turns in its primary coil and 360 turns in its secondary coil. If the input rms voltage for the 60-turn coil is 120 V, what is the output rms voltage of the secondary coil
a. 240 V
b. 720 V
c. 360 V
d. 480 V
e. 20 V
Answer:
720 V
Explanation:
Given that,
The number of turns in primary coil, N₁ = 60
The number of turns in secondary coil, N₂ = 360
The input rms voltage, V₁ = 120 V
We need to find the output rms voltage of the secondary coil . The relation between number of turns in primary coil - secondary coil to the input rms voltage to the output rms voltage is given by :
[tex]\dfrac{N_1}{N_2}=\dfrac{V_1}{V_2}\\\\V_2=\dfrac{N_2V_1}{N_2}\\\\V_2=\dfrac{360\times 120}{60}\\\\V_2=720\ V[/tex]
So, the output rms voltage of the secondary coil is 720 V. Hence, the correct option is (b).
the lanthanides are all radioactive true or false
Answer:
False
Explanation:
All the lanthanides are not radioactive in nature. Just one of the lanthanides are radioactive.
The lanthanides belong to the f-block on the periodic tableOnly Promethium in this group are radioactive in nature. Other elements in the lanthanide series might have radioactive isotopes.Object A is 71 degrees and object B is 75 degrees how will thermal energy flow
Given :
Object A is 71 degrees and object B is 75 degrees .
To Find :
How will thermal energy flow.
Solution :
We know, by law of thermodynamics thermal energy will flow from higher temperature to lower temperature.
So, in the given question energy will flow from object B from object A.
Hence, this is the required solution.
A Carnot engine takes in heat at a temperature of 790 K and releases heat to a reservoir at a temperature of 470 K. What is its efficiency?
Answer: 1280 kilometers :D
Explanation:
790 K ' 470 K = 1280 KM (KILOMETERS)
Answer:
GIVE DIS GUY BRAINLIST
Explanation:
A red blood cell contains 4.8 107 free electrons. What is the total charge of these electrons in the red blood cell?
Answer:
Charge, [tex]q=7.68\times 10^{-12}\ C[/tex]
Explanation:
It is given that,
The number of electron in a RBCs, [tex]n=4.8\times 10^7[/tex]
We need to find the total charge of these electrons in the red blood cell. Let it is q. Using the quantization of charge as follows :
q = ne
e is the change on electron
[tex]q=4.8\times 10^7\times 1.6\times 10^{-19}\\\\q=7.68\times 10^{-12}\ C[/tex]
So, the net charge is [tex]7.68\times 10^{-12}\ C[/tex].
2.
Which statement is true regarding the launch of a rocket?
The downward force of the rocket exhaust is greater than the upward force on the rocket.
The downward force of the rocket exhaust is equal to the upward force on the rocket.
The upward force of the rocket exhaust is equal to the downward force on the rocket.
The downward force of the rocket exhaust is less than the upward force on the rocket.
Answer:
First one,
Its because
Downward force must greater to uplift its weight.
From 3rd law of motion
Answer:
The downward force of the rocket exhaust is greater than the upward force on the rocket.
Explanation:
Your Welcome (;
A cannonball is launched diagonally with an initial horizontal speed of 51.0m/s
and an initial vertical speed of 24.0m/s. Label the hypotenuse, opposite side and
adjacent side, and determine all unknowns.
m/s
initial speed:
initial horizontal speed:
initial vertical speed:
m/s
m/s
At what angle () was the cannonball launched?
• initial horizontal speed: 51.0 m/s
• initial vertical speed: 24.0 m/s
• initial speed: √((51.0 m/s)² + (24.0 m/s)²) ≈ 56.4 m/s
• angle: tan(θ) = (24.0 m/s) / (51.0 m/s) → θ ≈ 25.2º
Using Pythagoras, the initial speed and the launch angle of the cannon ball are 56.36 m/s and 25.20° respectively.
The initial speed can be obtained using length of the diagonal :
v² = 51² + 24²
v² = 2025
v = √3177
v = 56.36 m/s
The launch angle, θ :
Tanθ = opposite / Adjacentθ = tan¯¹(24/51)
θ = tan¯¹(0.4705)
θ = 25.20°
Hence, the angle of launch is 25.20°
Learn more : https://brainly.com/question/18766174
How would you go about measuring the speed of a vehicle? What measurements would you have to take? What calculations would you have to perform?
Answer:
For a body moving at a uniform velocity you can calculate the speed by dividing the distance traveled by the amount of time it took, for example one mile in 1/2 hour would give you 2 miles per hour. If the velocity is non-uniform all you can say is what the average speed is.
During a football workout, two linemen are pushing the coach on the sled. The
combined mass of the sled and the coach is 300 kg. The coefficient of friction between
the sled and the grass is 0.800. The sled accelerates at the rate of 0.580 m/s^2.
Determine the force applied to the sled by the lineman.
Answer:
F_{players} = 2528.4[N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces on a body must be equal to the product of mass by acceleration.
On the sled act two forces, the force of friction and The Force executed by the football players.
The movement of the football players will be taken as positive, while the friction will be taken as negative, since it is opposed to the movement of the sled.
ΣF = m*a
where:
F = force [N]
m = mass [kg]
a = acceleration = 0.580 [m/s²]
[tex]F_{players} - f_{friction} = m*a[/tex]
The friction force is defected as the coefficient of friction by the normal force, the normal force on a horizontal surface can be calculated as the product of mass by gravitational acceleration.
[tex]f_{friction}=0.8*(300*9.81)\\f_{friction}=2354.4[N][/tex]
Now we can calculate the force exerted by the players.
[tex]F_{players}-2354.5=300*0.580\\F_{players}=2528.4[N][/tex]
Pete is driving down 7th Street. He drives 300 meters in 18 seconds. Assuming he does not speed up or slow down, what is his speed in meters per second? Round answer to the hundredths place.
Answer:
16.67m/s
Explanation:
Given parameters:
Distance Pete drove = 300m
Time taken = 18s
Unknown:
Speed = ?
Solution:
Speed is the distance traveled per unit of time.
It is mathematically expressed as;
Speed = [tex]\frac{distance}{time}[/tex]
Insert the parameters and solve;
Speed = [tex]\frac{300}{18}[/tex] = 16.67m/s
what is the difference of dispersed phase and continuous phase?
Answer:
The phase existing as small droplets is called the dispersed phase and the surrounding liquid is known as the continuous phase. Emulsions are commonly classified as oil-in-water (O/W) or water-in-oil (W/O) depending on whether the continuous phase is water or oil.
Explanation:
The first excited state of a particular atom in a gas is 5.8 eV above the ground state. A moving electron collides with one of these atoms, and excites the atom to its first excited state. Immediately after the collision the kinetic energy of the electron is 3.7 eV. What was the kinetic energy of the electron just before the collision?
Ki = ____eV
Answer:
E₀ = 9.5 eV
Explanation:
In the processes of absorption, excitation and shocks the energy must be conserved therefore the energy before the shock is
E₀ = E_excitation + E_residual
E₀ = 5.8 + 3.7
E₀ = 9.5 eV
this is the energy of the electron before the collision
: To determine the focal length of a lens, the following except _ is needed
Answers options
Needles
Siphon
Converging Lens
Diverging Lens