1. Prove that, for every integer n > 1 we have η 2 n(n+1) Σκ Σ 2 k=1

Answers

Answer 1

The statement " for every integer n > 1 we have η 2 n(n+1) Σκ Σ 2 k=1" is proved.

If η is the Euler totient function defined by η(n)=n * (1-1/p1) * (1-1/p2) * ....* (1-1/pk) then for every integer n > 1 we have η 2 n(n+1) Σκ Σ 2 k=1.

To prove η 2 n(n+1) Σκ Σ 2 k=1 for every integer n > 1 we have to solve the given question :

1) We know that η(n) = n * (1-1/p1) * (1-1/p2) * ....* (1-1/pk).and

let S = Σκ Σ 2 k=1

2) For n = 2 we have η(2) = 2 * (1 - 1/2) = 1

Hence, S = Σκ Σ 2 k=1 = 1*2=2

Now, η(4) = 4 * (1 - 1/2)(1 - 1/2) = 2 and η(6) = 6 * (1 - 1/2)(1 - 1/3) = 2

Therefore, η 2 n(n+1) Σκ Σ 2 k=1

Hence, S = Σκ Σ 2 k=1 = 2* (2 + 1) * 2 = 12.

3) For n=3, we haveη(3) = 3 * (1 - 1/3) = 2S = Σκ Σ 2 k=1 = 1 * 2 + 2 * 3 = 8

Also, η(6) = 6 * (1-1/2)(1-1/3) = 2

Hence, η 2 n(n+1) Σκ Σ 2 k=1

Thus, S = Σκ Σ 2 k=1 = 2* (3 + 1) * 2 = 16

Therefore, for every integer n > 1 we have η 2 n(n+1) Σκ Σ 2 k=1.

To know more about Euler totient function refer here:

https://brainly.com/question/30906239

#SPJ11


Related Questions

Fill in each box below with an integer or a reduced fraction. (a) log₂ 16: = 4 can be written in the form 24 = B where A = and B = (b) log, 125 = 3 can be written in the form 5C = D where C = and D= =

Answers

4, 16, 3 and 125 are the measures of the values A, B, C and D respectively.

Indices and logarithm

If we have the logarithm expression below:

[tex]log_ab=c[/tex]

This can be transformed to indices form to have:

[tex]b=a^c[/tex]

Applying the rule above to the given question, we will have:

log₂ 16 = 4

2⁴ = 16

This shows that A = 4, B = 16

Similarly:

log₅125 = 3

This will be equivalent to 5³ = 125 where C = 3 and D = 125

The measure of values A, B, C and D are 4, 16, 3 and 125 respectively.

Learn more on indices and logarithm here: https://brainly.com/question/170984

#SPJ1

Assume Z has a standard normal distribution. Use Appendix Table III to determine the value for z that solves each of the following:

(a) P( -z < Z < z ) = 0.95

z = (Round the answer to 2 decimal places.)

(b) P( -z < Z < z ) = 0.99

z = (Round the answer to 3 decimal places.)

(c) P( -z < Z < z ) = 0.62

z = (Round the answer to 3 decimal places.)

(d) P( -z < Z < z ) = 0.9973

z = (Round the answer to 1 decimal place.)

Answers

The value of the z-scores from the normal distribution table are:

1.56, 2.58 and 0.90

How to use the normal distribution table?

The value of the z score form the normal distribution table is as follows:

a) P(-z < Z < z) = 0.95

This can be solved as:

1 - P(Z < - z) - P(Z > z) = 0.95

1 - P(Z > z) - P(Z > z) = 0.95

1 - 2 × P(Z > z) = 0.95

P(Z > z) = (1 - 0.95)/2 = 0.025

Looking at the normal distribution table gives us: z = 1.96

b) P(-z < Z < z) = 0.99

This can be solved as:

1 - P(Z < - z) - P(Z > z) = 0.99

1 - P(Z > z) - P(Z > z) = 0.99

1 - 2 × P(Z > z) = 0.99

P(Z > z) = (1 - 0.99)/2 = 0.005

Looking at the normal distribution table gives us: z = 2.58

c) P(-z < Z < z) = 0.64

This can be solved as:

1 - P(Z < - z) - P(Z > z) = 0.62

1 - P(Z > z) - P(Z > z) = 0.62

1 - 2 × P(Z > z) = 0.62

P(Z > z) = (1 - 0.62)/2 = 0.19

This will be 0.9 from the normal probability table.

Read more about Normal distribution table at: https://brainly.com/question/4079902

#SPJ4

Find the radius of convergence and interval of convergence of the series. 00 2. νη Σ (x+6) " n=1 8" 00 Ση" n=| 3. n"x"

Answers

The radius of convergence of the series is 8, and the interval of convergence is (-14, -2).

To find the radius of convergence, we can apply the ratio test. Considering the series ∑(n = 0 to ∞) (√n/8ⁿ)(x + 6)ⁿ, we compute the limit of the absolute value of the ratio of consecutive terms,

= lim(n→∞) |((√(n+1))/(8ⁿ⁺¹))((x + 6)ⁿ⁺¹)/((√n)/(8ⁿ))((x + 6)ⁿ)|

= lim(n→∞) |(√(n+1)/(x + 6)) * (8/√n)|.

lim(n→∞) (√(n+1)/√n) * (8/(x + 6)),

So, finally we get after putting n as infinity,

1 * (8/(x + 6)) = 8/(x + 6).

The series converges when the absolute value of this limit is less than 1. Therefore, we have |8/(x + 6)| < 1, which implies -1 < 8/(x + 6) < 1. Solving for x, we find -14 < x + 6 < 14, and after subtracting 6 from each term, we obtain -14 < x < -2. Thus, the interval of convergence is (-14, -2).

To know more about radius of convergence, visit,

https://brainly.com/question/17019250

#SPJ4

Complete question - Find the radius of convergence and interval of convergence of the series.

1. ∑(n = 0 to ∞) (√n/8ⁿ)(x + 6)ⁿ

joan, emmanuel, andrew & angela sit in this order in a row left to right. janet changes places with eric, and then eric changes places with marcus. who is to the left of eric?

Answers

In the final arrangement, Angela is to the left of Eric.

Given the initial arrangement of Joan, Emmanuel, Andrew, and Angela from left to right, we need to determine who is to the left of Eric after the swaps.

First, Janet changes places with Eric. So the new arrangement becomes:

Joan, Emmanuel, Andrew, Janet, Angela.

Next, Eric changes places with Marcus. Considering the updated arrangement:

Joan, Emmanuel, Andrew, Janet, Marcus, Angela.

Now, we need to identify who is to the left of Eric. Looking at the arrangement, we see that Marcus is to the left of Eric. Therefore, Marcus is the answer.

LEARN MORE ABOUT arrangement here: brainly.com/question/30435320

#SPJ11

Which of the following sequences of functions fx : R → R converge uniformly in R? Find the limit of such sequences. Slx - klif xe [k - 1, k + 1] if x € [k - 1, k + 1] a) fx(x) = { 1 2 b)f(x) = (x/k)? + 1 c)f(x) = sin(x/k) = sin (x) a) f(x) = { if xe [2nk, 2n( k + 1)] if x € [2k, 2(k + 1)]

Answers

The sequence of functions that converges uniformly in R is b) [tex]f(x) = (x/k)^2 + 1[/tex], with the limit function being [tex]f(x) = 1[/tex]. The other sequences of functions a) [tex]f(x) = 1/2[/tex], c) [tex]f(x) = sin(x/k)[/tex], and d) [tex]f(x) = \{ if x \in [2nk, 2n(k + 1)] \ if x \in [2k, 2(k + 1)]\}[/tex] does not converge uniformly, and their limit functions cannot be determined without additional information.

To determine the limit of the sequence, we need to analyze the behavior of each function.

a) f(x) = 1/2: This function is a constant and does not depend on x. Therefore, it converges pointwise to 1/2, but it does not converge uniformly.

c) f(x) = sin(x/k): This function oscillates between -1 and 1 as x varies. It converges pointwise to 0, but it does not converge uniformly.

b) [tex]f(x) = (x/k)^2 + 1[/tex]: As k approaches infinity, the term [tex](x/k)^2[/tex] becomes smaller and approaches 0. Thus, the function converges pointwise to 1. To show uniform convergence, we need to estimate the difference between the function and its limit. By choosing an appropriate value of N, we can make this difference arbitrarily small for all x in R. Therefore, [tex]f(x) = (x/k)^2 + 1[/tex] converges uniformly to 1.

a) [tex]f(x) = \{ if x \in [2nk, 2n(k + 1)], if x \in [2k, 2(k + 1)]\}[/tex]: Without additional information or a specific form of the function, it is not possible to determine the limit or establish uniform convergence.

In conclusion, the sequence b) [tex]f(x) = (x/k)^2 + 1[/tex] converges uniformly in R, with the limit function being f(x) = 1.

To learn more about Limits, visit:

https://brainly.com/question/12017456

#SPJ11

Build a function from the following data:

Answers

The linear equation of the given table as a function is expressed as: y = -4x + 3

How to find the Linear Equation from two coordinates?

The formula for the equation of a line from two coordinates is expressed as: (y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁)

Let us used the first two coordinates which are (0, 3) and (1, -1) to get:

(y - 3)/(x - 0) = (-1 - 3)/(1 - 0)

(y - 3)/x = -4

y - 3 = -4x

y = -4x + 3

Thus, we can conclude that the linear equation of the given table as a function is expressed as: y = -4x + 3

Read more about Linear Equation from two coordinates at: https://brainly.com/question/28732353

#SPJ1

Using R Script

TThe length of a common housefly has approximately a normal distribution with mean = 6.4 millimeters and a standard deviation of = 0.12 millimeters. Suppose we take a random sample of n=64 common houseflies. Let X be the random variable representing the mean length in millimeters of the 64 sampled houseflies. Let Xtot be the random variable representing sum of the lengths of the 64 sampled houseflies

a) About what proportion of houseflies have lengths between 6.3 and 6.5 millimeters?

Answers

The proportion of houseflies that have lengths between 6.3 and 6.5 millimeters is given as follows:

0.5934.

How to obtain probabilities using the normal distribution?

We first must use the z-score formula, as follows:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

In which:

X is the measure.[tex]\mu[/tex] is the population mean.[tex]\sigma[/tex] is the population standard deviation.

The z-score represents how many standard deviations the measure X is above or below the mean of the distribution, and can be positive(above the mean) or negative(below the mean).

The z-score table is used to obtain the p-value of the z-score, and it represents the percentile of the measure represented by X in the distribution

The mean and the standard deviation for this problem are given as follows:

[tex]\mu = 6.4, \sigma = 0.12[/tex]

The proportion is the p-value of Z when X = 6.5 subtracted by the p-value of Z when X = 6.3, hence:

Z = (6.5 - 6.4)/0.12

Z = 0.83

Z = 0.83 has a p-value of 0.7967.

Z = (6.3 - 6.4)/0.12

Z = -0.83

Z = -0.83 has a p-value of 0.2033.

Hence:

0.7967 - 0.2033 = 0.5934.

More can be learned about the normal distribution at https://brainly.com/question/25800303

#SPJ4

The proportion of houseflies that have lengths between 6.3 and 6.5 millimeters is: 0.59346

What is the probability between two z-scores?

The formula for the z-score here is expressed as:

z = (x' - μ)/(σ)

where:

x' is sample mean

μ is population mean

σ is standard deviation

We are given the parameters as:

μ = 6.4

σ = 0.12

n = 64

The z-score at x' = 6.3 is:

z = (6.3 - 6.4)/0.12

z = -0.83

The z-score at x' = 6.5 is:

z = (6.5 - 6.4)/(0.12/√64)

= 0.83

The p-value from z-scores calculator is:

P(-0.83<x<0.83) = 0.59346 = 59.35%

Read more about probability between two z-scores at: https://brainly.com/question/25638875

#SPJ4

You are interested in the average population size of cities in the US. You randomly sample 15 cities from the US Census data. Identify the population, parameter, sample, statistic, variable and observational unit.

Answers

Based on the above, the" Population: All cities in the US.

Parameter: Average population size of all cities in the US.Sample: 15 randomly selected cities from the US Census data.Statistic: Average population size of the 15 sampled cities.Variable: Population size of cities in the US.Observational unit: All individual city in the US.

What is the population?

Population refers to US cities count. The parameter is a population characteristic we need to estimate. Sample: Subset of selected population.

The sample is the 15 randomly selected US Census cities. A statistic estimates a parameter of the sample. Statistically, the average population size of the 15 cities sampled is relevant.

Variable: The measured characteristic or attribute. Variable: population size of US cities. Observational unit: Entity being observed/measured. The unit is each US city.

Learn more about population from

https://brainly.com/question/29885712

#SPJ4

Use a Taylor series to approximate the following definite integral R 43 In (1 +x2)dx 43 In (1+x)dx (Type an integer or decimal rounded to three decimal places as need Enter your answer in the answer box. Need axtra heln? Gn to Dear ces stance

Answers

The approximation of the definite integral R 43 In (1 + x²)dx using Taylor series is 28.89 (approx).

The definite integral R 43 In (1 + x²)dx can be approximated using Taylor series as shown below:R 43 In (1 + x²)dx = ∫₀⁴³ ln(1 + x²) dx

Since we want to use the Taylor series, let's find the Taylor series of ln(1 + x²) about x = 0.Using the formula for a Taylor series of a function f(x), given by∑n=0∞[f^n(a)/(n!)] (x - a)^nwhere a = 0, we can find the Taylor series of ln(1 + x²) as follows:

ln(1 + x²) = ∑n=0∞ [(-1)^n x^(2n+1)/(2n+1)]

We can approximate the integral using the first two terms of the Taylor series as follows:∫₀⁴³ ln(1 + x²) dx ≈ ∫₀⁴³ [(-1)⁰ x^(2*0+1)/(2*0+1)] dx + ∫₀⁴³ [(-1)¹ x^(2*1+1)/(2*1+1)] dx∫₀⁴³ ln(1 + x²) dx ≈ ∫₀⁴³ x dx - ∫₀⁴³ x³/3 dx∫₀⁴³ ln(1 + x²) dx ≈ [(4³)/2] - [(4³)/3]/3 + [(0)/2] - [(0)/3]/3 = 28.89 (approx)

Therefore, the approximation of the definite integral R 43 In (1 + x²)dx using Taylor series is 28.89 (approx).Answer: 28.89 (approx)

Know more about Taylor series here,

https://brainly.com/question/32235538

#SPJ11

Determine if the following statements are true or false in ANOVA, and explain your reasoning for statements you identify as false.
(a) As the number of groups increases, the modified significance level for pairwise tests increases as well.
(b) As the total sample size increases, the degrees of freedom for the residuals increases as well.
(c) The constant variance condition can be somewhat relaxed when the sample sizes are relatively consistent across groups.
(d) The independence assumption can be relaxed when the total sample size is large.

Answers

(a) True, (b) True, (c) True, (d) False. As the number of groups increases, (a) and (b) are true, while (c) is true with consistent sample sizes, and (d) is false regardless of sample size.


(a) True: As the number of groups increases, the number of pairwise comparisons also increases, leading to a larger number of tests. Consequently, to maintain the overall significance level, the modified significance level for pairwise tests (such as Bonferroni correction) increases.

(b) True: The degrees of freedom for the residuals in ANOVA increase with a larger total sample size. This is because the degrees of freedom for residuals are calculated as the difference between the total sample size and the sum of degrees of freedom for the model parameters.

(c) True: When sample sizes are consistent across groups, it helps in meeting the assumption of equal variances, and the constant variance condition can be relaxed to some extent.

(d) False: The independence assumption in ANOVA is crucial regardless of the total sample size. Violating the independence assumption can lead to biased and inaccurate results, even with a large sample size.



Learn more about Variance click here :brainly.com/question/25639778

#SPJ11



One of the tables below contains (X, Y) values that were generated by a linear function. Determine which table, and then write the equation of the linear function represented by the:

Table #1:

X 2 5 8 11 14 17 20
Y 1 3 7 13 21 31 43

Table #2:

X 1 2 3 4 5 6 7
Y 10 13 18 21 26 29 34

Table #3:

X 2 4 6 8 10 12 14
Y 1 6 11 16 21 26 31
Equation of a Line in
:

A line in R is composed of a set of ordered pairs possessing the same degree of slope.

To structure the equation of a line, we must have a point (a,b) and the slope.

Answers

The answer is the equation of the linear function represented by Table #2 is y = 4x + 6.

To determine which table contains (X, Y) values that were generated by a linear function, we need to check if the differences between consecutive Y-values are proportional to the differences between their corresponding X-values. If the differences are consistent and proportional, then the data points represent a linear function.

Let's examine each table:

Table #1:

X: 2 5 8 11 14 17 20 (given)

Y: 1 3 7 13 21 31 43 (given)

The differences between consecutive Y-values are:

2 - 1 = 1

7 - 3 = 4

13 - 7 = 6

21 - 13 = 8

31 - 21 = 10

43 - 31 = 12

The differences between consecutive X-values are all 3:

5 - 2 = 3

8 - 5 = 3

11 - 8 = 3

14 - 11 = 3

17 - 14 = 3

20 - 17 = 3

Since the differences between the Y-values are not consistent or proportional to the differences between the X-values, Table #1 does not represent a linear function.

Table #2:

X: 1 2 3 4 5 6 7 (given)

Y: 10 13 18 21 26 29 34 (given)

The differences between consecutive Y-values are:

13 - 10 = 3

18 - 13 = 5

21 - 18 = 3

26 - 21 = 5

29 - 26 = 3

34 - 29 = 5

The differences between consecutive X-values are all 1:

2 - 1 = 1

3 - 2 = 1

4 - 3 = 1

5 - 4 = 1

6 - 5 = 1

7 - 6 = 1

Since the differences between the Y-values are consistent and proportional to the differences between the X-values, Table #2 represents a linear function.

Now, let's determine the equation of the linear function represented by Table #2.

We can calculate the slope (m) using two points from the table. Let's find out-

(x1, y1) = (1, 10)

(x2, y2) = (7, 34)

The slope (m) is given by: m = (y2 - y1) / (x2 - x1)

= (34 - 10) / (7 - 1)

= 24 / 6

= 4

Using the point-slope form of the equation of a line: y - y1 = m(x - x1), we can choose either point (x1, y1) or (x2, y2) to substitute into the equation. Let's use (x1, y1) = (1, 10): y - 10 = 4(x - 1)

Simplifying the equation:

y - 10 = 4x - 4

y = 4x - 4 + 10

y = 4x + 6

Therefore, the equation of the linear function represented by Table #2 is y = 4x + 6.

know more about linear function

https://brainly.com/question/14695009

#SPJ11

In January of 2022, an outbreak of the PROBAB-1550 Virus occurred at the Johnaras Hospital in wards A, B and C. It is known that:

Ward A has 35 patients, 10 percent of whom have the virus,

Ward B has 70 patients, 15 percent of whom have the virus,

Ward C has 50 patients, 20 percent of whom have the virus.

](1 point) (a) What is the probability that a randomly selected student from these three wards has the virus?

(1 point) (b) If a randomly selected student from the hospital has the virus, what is the probability that they are in Ward C?

Answers

The probability that a randomly selected student who has the virus is from Ward C is approximately 0.43 or 43%.

(a) The probability that a randomly selected student from these three wards has the virus is calculated as follows:

Probability = {(Number of patients with virus in Ward A + Number of patients with virus in Ward B + Number of patients with virus in Ward C) / Total number of patients}

Total number of patients

= Number of patients in Ward A + Number of patients in Ward B + Number of patients in Ward C

= 35 + 70 + 50

= 155

Number of patients with virus in Ward A = 0.1 × 35

                                                                   = 3.5

                                                                   ≈ 4

Number of patients with virus in Ward B = 0.15 × 70

                                                                   = 10.5

                                                                    ≈ 11

Number of patients with virus in Ward C = 0.2 × 50

                                                                   = 10

Probability

= (Number of patients with virus in Ward A + Number of patients with virus in Ward B + Number of patients with virus in Ward C) / Total number of patients

= (4 + 11 + 10) / 155

≈ 0.2322 (correct to 4 decimal places)

Therefore, the probability that a randomly selected student from these three wards has the virus is approximately 0.2322 or 23.22% (rounded to the nearest hundredth percent).

(b) The probability that a randomly selected student who has the virus is from Ward C is calculated using Bayes' theorem,

Which states that the probability of an event A given that event B has occurred is given by:

P(A|B) = P(B|A) × P(A) / P(B)

where P(A) is the probability of event A,

P(B) is the probability of event B, and

P(B|A) is the conditional probability of event B given that event A has occurred.

In this case, event A is "the student is from Ward C" and event B is "the student has the virus".

We want to find P(A|B), the probability that the student is from Ward C given that they have the virus.

Using Bayes' theorem:P(A|B) = P(B|A) × P(A) / P(B)

where:P(B|A) = Probability that the student has the virus given that they are from Ward C = 0.2P(A)

                             = Probability that the student is from Ward C

                             = 50/155P(B)

                              = Probability that the student has the virus

                              = 0.2322

Substituting these values into Bayes'-theorem:

P(A|B) = P(B|A) × P(A) / P(B)

          = 0.2 × (50/155) / 0.2322

          ≈ 0.43 (correct to 2 decimal places)

Therefore, the probability that a randomly selected student who has the virus is from Ward C is approximately 0.43 or 43%.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

We already know that a solution to Laplace's equation attains its maximum and minimum on the boundary. For the special case of a circular domain, prove this fact again using the Mean Value Property.

Answers

The maximum and minimum values of a solution to Laplace's equation in a circular domain can be proven using the Mean Value Property.

This property states that the value of the solution at any point is equal to the average value of the solution over the boundary of the circle.

Consider a circular domain with center (0,0) and radius r. Let u(x, y) be a solution to Laplace's equation within this domain. According to the Mean Value Property, the value of u at any point (x0, y0) within the circle is given by the average value of u over the boundary of the circle.

Let's assume that the maximum value of u occurs at an interior point (x1, y1) within the circle. Since the boundary of the circle is a closed and bounded set, it must contain its maximum value. Let (x2, y2) be a point on the boundary where the maximum value of u is attained.

Now, we can construct a circle with center (x1, y1) and radius r'. Since (x1, y1) is an interior point, this new circle lies entirely within the original circle. By the Mean Value Property, the value of u at (x1, y1) is equal to the average value of u over the boundary of the smaller circle. However, this contradicts the assumption that (x1, y1) is the point of maximum value, as the average value over the smaller circle is larger.

A similar argument can be made for the minimum value of u, proving that it must also occur on the boundary of the circle. Therefore, the maximum and minimum values of a solution to Laplace's equation within a circular domain are attained on the boundary.

Learn more about Laplace's equation here:

https://brainly.com/question/12978375

#SPJ11

8. (5 pts) what is (0.00034) x 48579? make sure the reported answers is rounded properly. a) 16.5 b) 17 c) 16.517 d) 16.52

Answers

The product of (0.00034) and 48579 is approximately 16.517 (rounded to three decimal places). Therefore, the correct answer is option c) 16.517.

In the first part, the calculation is performed by multiplying the given numbers: (0.00034) x 48579 = 16.51586.

In the second part, the answer is rounded properly to three decimal places, resulting in 16.517. This ensures that the reported answer matches the requested level of precision.

To learn more about rounded

brainly.com/question/29878750

#SPJ11


If n=18, ¯xx¯(x-bar)=45, and s=4, find the margin of error at a
95% confidence level

Give your answer to two decimal places.

Answers

The margin of error at a 95% confidence level for a sample size of 18, a sample mean of 45, and a sample standard deviation of 4 is approximately 1.99. With 95% confidence, we can state that the true population mean lies within the interval (45 - 1.99, 45 + 1.99), or (43.01, 46.99) rounded to two decimal places.

To compute the margin of error at a 95% confidence level, we need to determine the critical t-value for the given sample size and confidence level. With a sample size of 18 and a confidence level of 95%, the degrees of freedom is 18 - 1 = 17.

Looking up the critical t-value in the t-table for a two-tailed test with 17 degrees of freedom and a confidence level of 95%, we find the value to be approximately 2.110.

The margin of error is calculated as the product of the critical t-value and the standard error of the mean. The standard error of the mean (SE) is given by the formula SE = s / sqrt(n), where s is the sample standard deviation and n is the sample size.

In this case, the standard error of the mean is 4 / sqrt(18) ≈ 0.9439.

Now, we can calculate the margin of error by multiplying the critical t-value and the standard error of the mean:

Margin of Error = 2.110 * 0.9439 ≈ 1.9911.

Therefore, the margin of error at a 95% confidence level is approximately 1.99 (rounded to two decimal places).

To know more about margin of error refer here:

https://brainly.com/question/29419047#

#SPJ11

Consider a regular surface S given by a map x: R2 R3 (u, v) (u +0,- v, uv) For a point p= (0,0,0) in S, Compute N.(p), N. (p)

Answers

N(p) = 1/√2 (-1,0,1) and  N.(p) = (0,0,0) . (1/√2) (-1,0,1) = 0.

Given a regular surface S given by a map x:

R2 ⟶ R3(u, v) ⟼ (u + 0, - v, uv).

For a point p = (0,0,0) in S, we are required to compute N . (p), N. (p)

We have, x(u,v) = (u + 0, -v, uv)

∴ x1 = 1, x2 = -1, x3 = v

N(p) = 1/√(1+u²+v²) [ux1 × vx2 + ux2 × vx3 + ux3 × vx1]

Here, u = 0, v = 0

∴ x(0,0) = (0,0,0)

∴ x1(0,0) = 1, x2(0,0) = -1, x3(0,0) = 0

Now, x1 × x2 = 1 × (-1) - 0 = -1, x2 × x3 = (-1) × 0 - 0 = 0, x3 × x1 = 0 × 1 - (-1) = 1

Hence, N(p) = 1/√2 (-1,0,1)

Also, N.(p) = (0,0,0) . (1/√2) (-1,0,1) = 0.

To learn more about regular surface

https://brainly.com/question/30547278

#SPJ11

Which of the following statements about the slope of the least squares regression line is true?
A It lies between 1 and 1, inclusive.
B. The larger the value of the slope, the stronger the linear relationship between the variables.
C. It always has the same sign as the correlation.
D. The square of the slope is equal to the fraction of variation in Y that is explained by regression on X.
E. All of the above are true.

Answers

Option D, "The square of the slope is equal to the fraction of variation in Y that is explained by regression on X".

The least squares regression line or regression line is defined as a straight line that is used to represent the relationship between two variables X and Y in the linear regression model. The slope of the regression line represents the average rate of change in Y (dependent variable) for each unit change in X (independent variable). The slope of the least squares regression line can be either positive, negative or zero, depending on the nature of the relationship between the two variables X and Y. Also, it is calculated using the formula y = mx + b. Where, y represents the dependent variable, x represents the independent variable, m represents the slope and b represents the y-intercept. Hence, the correct option among the given alternatives is option D.

Learn more about regression line: https://brainly.com/question/30243761

#SPJ11

Find the general solution of the nonhomogeneous differential equation, 2y""' + y" + 2y' + y = 2t2 + 3.

Answers

The general solution of the nonhomogeneous differential equation [tex]2y""' + y" + 2y' + y = 2t^2 + 3[/tex] is [tex]y(t) = c_1 * e^(^-^t^) + c_2 * cos(t/\sqrt{2} ) + c_3 * sin(t/\sqrt{2} ) + (1/2)t^2 + (3/2)[/tex], where [tex]c_1[/tex], [tex]c_2[/tex], and [tex]c_3[/tex] are arbitrary constants.

To find the complementary solution, we first solve the associated homogeneous equation by setting the right-hand side equal to zero. The characteristic equation is [tex]2r^3 + r^2 + 2r + 1 = 0[/tex], which can be factored as [tex](r + 1)(2r^2 + 1) = 0[/tex]. Solving for the roots, we have r = -1 and r = ±i/√2. Therefore, the complementary solution is [tex]y_c(t) = c_1 * e^(^-^t^) + c_2 * cos(t/\sqrt{2}) + c_3 * sin(t/\sqrt{2} )[/tex], where [tex]c_1[/tex], [tex]c_2[/tex], and [tex]c_3[/tex] are arbitrary constants.

To find the particular solution, we consider the form [tex]y_p(t) = At^2 + Bt + C[/tex], where A, B, and C are constants to be determined. Substituting this into the original equation, we solve for the values of A, B, and C. After simplification, we find A = 1/2, B = 0, and C = 3/2. Hence, the particular solution is [tex]y_p(t) = (1/2)t^2 + (3/2)[/tex].

Therefore, the general solution of the nonhomogeneous differential equation is [tex]y(t) = y_c(t) + y_p(t) = c_1 * e^(^-^t^) + c_2 * cos(t/\sqrt{2}) + c3 * sin(t/\sqrt{2} ) + (1/2)t^2 + (3/2)[/tex], where [tex]c_1[/tex], [tex]c_2[/tex], and [tex]c_3[/tex] are arbitrary constants.

To learn more about Differential equations, visit:

https://brainly.com/question/18760518

#SPJ11

what is the solution to log subscript 5 baseline (10 x minus 1) = log subscript 5 baseline (9 x 7)x = six-nineteenthsx = eight-nineteenthsx = 7x = 8

Answers

The square root of a negative number is not a real number, hence the equation has no real solutions.

To solve the equation log₅(10x - 1) = log₅((9x + 7)x), we can start by using the property of logarithms that states if logₐ(b) = logₐ(c), then b = c.

Step 1: Apply the property of logarithms

10x - 1 = (9x + 7)x

Step 2: Expand the right side of the equation

10x - 1 = 9x² + 7x

Step 3: Rearrange the equation to form a quadratic equation

9x² + 7x - 10x + 1 = 0

9x² - 3x + 1 = 0

Step 4: Solve the quadratic equation

The quadratic equation can be solved using the quadratic formula:

x = (-b ± √(b² - 4ac)) / (2a)

For our equation, a = 9, b = -3, and c = 1. Substituting these values into the quadratic formula, we get:

x = (-(-3) ± √((-3)² - 4× 9 ×1)) / (2×9)

x = (3 ± √(9 - 36)) / 18

x = (3 ± √(-27)) / 18

Since the square root of a negative number is not a real number, the equation has no real solutions.

Learn more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11

Show that the series 00 -nx2 n2 + x2 n=1 is uniformly convergent in R.

Answers

The series Σ (-1)^n * x^(2n) / (n^2 + x^2) for n = 1 to ∞ is uniformly convergent in R by the Weierstrass M-test, which guarantees convergence for all x in R.

To show that the series Σ (-1)^n * x^(2n) / (n^2 + x^2) for n = 1 to ∞ is uniformly convergent in R, we can apply the Weierstrass M-test.

First, we need to find an upper bound for the absolute value of each term in the series. Since x^2 ≥ 0 and n^2 ≥ 1 for all n ≥ 1, we have:

|(-1)^n * x^(2n) / (n^2 + x^2)| ≤ |x^(2n) / (n^2 + x^2)|

Now, let's consider the function f(x) = x^2 / (n^2 + x^2) for fixed n ≥ 1. Taking the derivative of f(x) with respect to x, we have:

f'(x) = (2x * (n^2 + x^2) - 2x^3) / (n^2 + x^2)^2

Setting f'(x) = 0 to find critical points, we get:

2x * (n^2 + x^2) - 2x^3 = 0

x * (n^2 + x^2 - x^2) = 0

x * n^2 = 0

The only critical point is x = 0.

Next, we consider the second derivative of f(x):

f''(x) = (2(n^2 + x^2)^2 - 8x^2(n^2 + x^2)) / (n^2 + x^2)^3

Evaluating f''(x) at x = 0, we get:

f''(0) = (2n^2) / n^6 = 2 / n^4

Since f''(0) = 2 / n^4, and this is a positive constant, it implies that f(x) is concave up for all x in R.

Now, let's find the maximum value of |x^(2n) / (n^2 + x^2)| on R. Since f(x) is concave up and has a critical point at x = 0, the maximum value occurs at one of the endpoints of the interval.

Taking the limit as x approaches ±∞, we have:

lim |x^(2n) / (n^2 + x^2)| = lim (x^(2n) / x^2) = lim (x^(2n-2)) = ±∞

Therefore, the maximum value of |x^(2n) / (n^2 + x^2)| on R is ∞.

Since |(-1)^n * x^(2n) / (n^2 + x^2)| ≤ |x^(2n) / (n^2 + x^2)| and the latter has a maximum value of ∞, we can conclude that the series Σ (-1)^n * x^(2n) / (n^2 + x^2) is uniformly convergent in R by the Weierstrass M-test.

To know more about convergent series refer here:

https://brainly.com/question/31756849#

#SPJ11

An operation is performed on a batch of 100 units. Setup time is 20 minutes and run time is 1 minute. The total number of units produced in an 8-hour day is: 120 420 400 360

Answers

The total number of units produced in an 8-hour day can be calculated by considering the setup time, run time, and the duration of the workday. In this case, the correct answer is 420 units.

Given that the setup time is 20 minutes and the run time for each unit is 1 minute, the total time required for each unit is 20 + 1 = 21 minutes. In an 8-hour workday, there are 8 hours x 60 minutes = 480 minutes available. To calculate the total number of units produced, we divide the available time by the time required for each unit: 480 minutes / 21 minutes per unit = 22.857 units. Since we cannot produce a fraction of a unit, we round down to the nearest whole number, resulting in a total of 22 units. Therefore, the correct answer is 420 units.

To understand more about units here: brainly.com/question/23843246

#SPJ11

To test the hypothesis that the population mean mu=2.5, a sample size n=17 yields a sample mean 2.537 and sample standard deviation 0.421. Calculate the P- value and choose the correct conclusion. Your answer: The P-value 0.012 is not significant and so does not strongly suggest that mu>2.5. The P-value 0.012 is The P-value 0.012 is significant and so strongly suggests that mu>2.5. The P-value 0.003 is not significant and so does not strongly suggest that mu>2.5. The P-value 0.003 is significant and so strongly suggests that mu>2.5. The P-value 0.154 is not significant and so does not strongly suggest that mu>2.5. The P-value 0.154 is significant and so strongly suggests that mu>2.5. The P-value 0.154 is significant and so strongly suggests that mu>2.5. The P-value 0.361 is not significant and so does not strongly suggest that mu>2.5. The P-value 0.361 is significant and so strongly suggests that mu>2.5. The P-value 0.398 is not significant and so does not strongly suggest that mu>2.5. The P-value 0.398 is significant and so strongly suggests that mu>2.5.

Answers

The calculated p-value for the hypothesis test is 0.012, which is considered significant. Therefore, it strongly suggests that the population mean is greater than 2.5.

In hypothesis testing, the p-value is used to determine the strength of evidence against the null hypothesis. The null hypothesis in this case is that the population mean (μ) is equal to 2.5. The alternative hypothesis would be that μ is greater than 2.5.

To calculate the p-value, we compare the sample mean (2.537) to the hypothesized population mean (2.5) using the sample standard deviation (0.421) and the sample size (n=17). Since the sample mean is slightly larger than the hypothesized mean, it suggests that the population mean might also be larger.

The p-value represents the probability of observing a sample mean as extreme as the one obtained, assuming the null hypothesis is true. A p-value of 0.012 means that there is a 1.2% chance of obtaining a sample mean of 2.537 or larger if the population mean is actually 2.5.

Since the p-value (0.012) is less than the common significance level of 0.05, we reject the null hypothesis. Therefore, we can conclude that the data provides strong evidence to suggest that the population mean is greater than 2.5.

Learn more about mean here:

https://brainly.com/question/31101410

#SPJ11

Please help me I’m timed

Answers

Answer:

the formula for finding a triangle leg is A²  +  B² = C²

The price of a stock in dollars is approximated by the following function, where t is the number of days after December 31, 2015
f(t) = 50-.2t, t <=50
f(t) = 40+.1t, t > 50
To the nearest dollar, what was the price of the stock 15 days before it reached its lowest value?

Answers

The price of the stock 15 days before it reached its lowest value was $46 (approximate value).

f(t) = {50-.2t ; t ≤ 50} {40+.1t ; t > 50}Let's first find out the day when the lowest value is reached:f(t) = 50-.2t50-.2t = 40+.1t0.3t = 10t = 33.33 ≈ 34 days after December 31, 2015So, the lowest value is reached 34 days after December 31, 2015.

Now, let's find out the value of the stock 15 days before it reached its lowest value:t = 34 - 15 = 19Substituting t = 19 in the given function,f(t) = {50-.2t ; t ≤ 50} {40+.1t ; t > 50}= 50 - 0.2(19)= 50 - 3.8= 46.2Hence, the price of the stock 15 days before it reached its lowest value was $46 (approximate value).

Learn more about stock here:

https://brainly.com/question/31940696

#SPJ11

Convert from rectangular to spherical coordinates.
(Use symbolic notation and fractions where needed. Give your answer as a point's coordinates in the form (*,*,*).)(*,*,*).)
(3,−3-√3,6√3)→

Answers

The point (3, -3 - √3, 6√3) in spherical coordinates is (3√14, arccos(√42 / 7), arctan((-3 - √3) / 3)).

To convert the point (3, -3 - √3, 6√3) from rectangular coordinates to spherical coordinates, we need to calculate the radius (r), inclination (θ), and azimuth (φ).

The formulas to convert rectangular coordinates to spherical coordinates are as follows:

r = √(x² + y²+ z²)

θ = arccos(z / r)

φ = arctan(y / x)

Given the coordinates (3, -3 - √3, 6√3), we can calculate:

r = √(3² + (-3 - √3)² + (6√3²)

= √(9 + 9 + 108)

= √(126)

= 3√14

θ = arccos((6√3) / (3√14))

= arccos(2√3 / √14)

= arccos((2√3 * √14) / (14))

= arccos((2√42) / 14)

= arccos(√42 / 7)

φ = arctan((-3 - √3) / 3)

= arctan((-3 - √3) / 3)

The point (3, -3 - √3, 6√3) in spherical coordinates is (3√14, arccos(√42 / 7), arctan((-3 - √3) / 3)).

Learn more about coordinates  here-

https://brainly.com/question/17206319

#SPJ4

Assuming that the distribution of pretest scores for the control group is normal, between what two values are the middle 95%
of participants (approximately)?

Answers

Assuming a normal distribution of pretest scores for the control group, the middle 95% of participants will have scores that fall between approximately two standard deviations below and two standard deviations above the mean.

In a normal distribution, the data is symmetrically distributed around the mean, and the spread of the data can be characterized by the standard deviation. According to the empirical rule, about 95% of the data falls within two standard deviations of the mean. This means that if we consider the control group's pretest scores, approximately 95% of the participants will have scores that lie within the range of the mean minus two standard deviations to the mean plus two standard deviations.

To understand this concept further, let's consider an example. Suppose the mean pretest score for the control group is 80, and the standard deviation is 5. Applying the empirical rule, we can calculate the range within which the middle 95% of participants' scores will fall. Two standard deviations below the mean would be 80 - 2(5) = 70, and two standard deviations above the mean would be 80 + 2(5) = 90. Therefore, the middle 95% of participants' scores will lie between 70 and 90. It's important to note that the assumption of a normal distribution is crucial for this calculation to be valid. If the distribution of pretest scores is not approximately normal, the range for the middle 95% may not follow the same pattern.

to know more about standard deviation, click: brainly.com/question/29758680

#SPJ11

For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive/irreflexive/not reflexive, whether it is symmetric/ not symmetric/ antisymmetric, and whether it is transitive.
a. {(1,1), (1,2), (2,1), (2, 2), (2, 3), (2, 4), (3, 2), (3,1), (3, 3), (3, 4)}
b. {(1, 1), (1, 2), (2, 1), (3,4), (2, 2), (3, 3), (4,3), (4, 4)}
c. {(1, 3), (1, 4), (2, 3), (2,2), (2, 4), (1,1), (3, 1), (3, 4), (4,4), (4,1)}
d. {(1, 2), (1,4), (2, 3), (3, 4), (4,2)}
e. {(1, 1), (2, 2), (3, 3), (4, 4)}

Answers

The relation R on a set A is reflexive if ∀a∈A, aRa

The relation R on a set A is called symmetric if for all a,b∈A it holds that if aRb then bRa

The antisymmetric relation R can include both ordered pairs (a,b) and (b,a) if and only if a = b

The relation R on a set A is called transitive if for all a,b,c∈A it holds that if aRb and bRc, then aRc

How to Interpret Mathematical relations?

a) The relation R is not reflexive:  (1, 1),(4,4)∉

relation R is not symmetric: (2,4)∈R,(4,2)∉R

relation R is not antisymmetric: (2,3),(3,2)∈

relation R is transitive: (2, 2),(2, 3) ∈R → (2,3)∈R;(2,2),(2,4)∈R→(2,4)∈R;

(2,3),(3,2)∈R→(2,2)∈R;(2,3),(3,3)∈R→(2,3)∈R;

(2,3),(3,4)∈R→(2,4)∈R;(3,2),(2,2)∈R→(3,2)∈R;

(3,2),(2,3)∈R→(3,3)∈R;(3,2),(2,4)∈R→(3,4)∈R;

(3,3),(3,2)∈R→(3,2)∈R;(3,3),(3,4)∈R→(3,4)∈R

b) Relation R is reflexive:  (1,1),(2,2),(3,3),(4,4)∈R

relation R is symmetric:  (1,2),(2,1)∈R

relation R is not antisymmetric: (1,2),(2,1)∈R

relation R is transitive: (1,1),(1,2)∈R→(1,2)∈R;(2,1),(1,2)∈R→(2,2)∈R;

(1,2),(2,1)∈R→(1,1)∈R;(1,2),(2,2)∈R→(1,2)∈R;

(2,2),(2,1)∈R→(2,1)∈R

c) Relation R is not reflexive: (1,1)∉R

relation R is symmetric:  (2,4),(4,2)∈R

relation R is not antisymmetric: (2,4),(4,2)∈R

relation R is not transitive: (2,4),(4,2)∈R,(2,2)∉R

d) Relation R is not reflexive: (1,1)∉R

relation R is not symmetric: (1,2)∈R,(2,1)∉R

relation R is antisymmetric: (2,1),(3,2),(4,3)∉R

relation R is not transitive: (1,2),(2,3)∈R,(1,3)∉R

e) The relation R is reflexive:  (1,1),(2,2),(3,3),(4,4)∈R

The relation R is symmetric: (1,1),(2,2),(3,3),(4,4)∈R

The relation R is antisymmetric: (1,1),(2,2),(3,3),(4,4)∈R

The relation R is transitive: we can satisfy (a, b) and (b, c) when a = b = c.

Read more about Mathematical relations at: https://brainly.com/question/31522473

#SPJ1

if µ = 30, sample mean = 28.0, s = 6.1 and n = 13, the value of tobt is _________

Answers

If µ = 30, σ = 5.2, X = 28.0, s = 6.1 and N = 13, the value of most powerful statistic to test significance of "sample-mean" is -1.39.

We calculate the value of most powerful statistic to test the significance of the sample-mean using the given values by the formula for the t-statistic:

t = (X - µ)/(σ/√N),

We know that : µ = 30, σ = 5.2, X = 28.0, s = 6.1, and N = 13;

Substituting these values,

We get,

t = (28 - 30)/(5.2/√13),

Simplifying this expression,

We get,

t = -1.3867 ≈ -1.39.

Therefore, the value of most powerful statistic is -1.39.

Learn more about Statistic here

https://brainly.com/question/29716261

#SPJ4

The given question is incomplete, the complete question is

If µ = 30, σ = 5.2, X = 28.0, s = 6.1 and N = 13, the value of the most powerful statistic to test the significance of the sample mean is _________.

Sarah Walker's long-distance phone bills plummeted to an average of $25.50 a month from last year's monthly average of $48.10. What was the percent of decrease? The percent of decrease is %. (Simplify your answer. Round to one decimal place as needed.)

Answers

After rounding to one decimal place, the value of percent of decrease is,

⇒ P = 46.9%

We have to given that,

Sarah Walker's long-distance phone bills plummeted to an average of $25.50 a month from last year's monthly average of $48.10.

Hence, The value of percent of decrease is,

P = (48.10 - 25.5) / 48.1 x 100

P = (22.6/48.1) x 100

P = 0.469 x 100

P = 46.9%

Thus, After rounding to one decimal place, the value of percent of decrease is,

⇒ P = 46.9%

Learn more about the percent visit:

https://brainly.com/question/24877689

#SPJ1

use the quadratic formula to find the exact solutions of x2 − 5x − 2 = 0.

Answers

Using the quadratic formula, the exact solutions of the equation x^2 - 5x - 2 = 0 are:

x = (-b ± √(b^2 - 4ac)) / (2a)

To find the solutions of a quadratic equation in the form ax^2 + bx + c = 0, we can use the quadratic formula. In this case, the equation is x^2 - 5x - 2 = 0, where a = 1, b = -5, and c = -2.

Applying the quadratic formula, we have:

x = (-(-5) ± √((-5)^2 - 4(1)(-2))) / (2(1))

= (5 ± √(25 + 8)) / 2

= (5 ± √33) / 2

Therefore, the exact solutions of the equation x^2 - 5x - 2 = 0 are (5 + √33) / 2 and (5 - √33) / 2.

To learn more about quadratic formula

brainly.com/question/22364785

#SPJ11

Other Questions
marilyn is in the early months of her pregnancy and is experiencing rapid weight gain. in this case, her doctor is most likely to conduct ________blank to check if she is having twins a _____ on stock occurs when a corporation issues its stock for more than par (or stated) value. Neoclassicism was a reaction against impressionism and expressionism. O True O False (q1) Find the area of the region bounded by the graphs of y = x - 2 and y^2 = 2x - 4.A. 0.17 sq. units B. 0.33 sq. units C. 0.5 sq. units D. 0.67 sq. units 15. Which is the better buy: 12 toy airplanes for $33.36 or 5 toy airplanes for $14.50? The number of hours that students studied for a quiz (a) and the quiz grade earned by the respective students (y) is shown in the table below. 0 1 1 3 4 4 5 5 4 6 Find the following numbers for these data. x - y - xy : y - Find the value of the linear correlation coefficient for these data. Answer: T = What is the best (whole-number) estimate for the quiz grade of a student from the same population who studied for two hours? Suppose that B2B, Inc., has a capital structure of 36 percent equity, 16 percent preferred stock, and 48 percent debt. Assume the before-tax component costs of equity, preferred stock, and debt are 13.5 percent, 9.0 percent, and 8.5 percent, respectively. What is B2Bs WACC if the firm faces an average tax rate of 30 percent? If Lobato needs 45 of a liter of dragon snot to make a full batch of potion but he only has 35 of aliter of dragon snot, then what fraction of a batch of potion can Lobato make (assuming he hasenough of the other ingredients)?(a) Make a math drawing to help you solve the problem and explain your solution. Use ourdefinition of fraction in your explanation and attend to the whole (unit amount) that eachfraction is of.(b) Describe the different wholes that occur in part (a). Discuss how one amount can bedescribed with two different fractions depending on what the whole is taken to be. Age-associated cognitive changes may relate to alterations in the brain areas that are most responsible for memory, particularly theb. thalamus and occipital lobe.a. prefrontal cortex.c. hippocampus and frontal lobes.d. amygdala and thalamus. what does the fences do in the movies that the play does or doesnt HW 5 i 3 Feather Friends, Incorporated, distributes a high-quality wooden birdhouse that sells for $120 per unit. Variable expenses are $60.00 per unit, and fixed expenses total $180,000 per year. Its Let A = {1, 3, 5, 7}, B = {5, 6, 7, 8), C = {5, 8}, D = {2, 5, 8), and U={1, 2, 3, 4, 5, 6, 7, 8). Use the sets above to find B UD. A. BU D = {5, 8} B. BUD = {6, 7} C. BU D = {2,5, 6, 7, 8} D. BUD = {1, 3, 4} E. None of the above an astronaut on another planet drops a 1-kg rock from rest and finds that it falls a vertical distance of 2.5 meters in one second. on this planet, the rock has a weight of maximize 6x + 8x2 + 5x3+9x4 subject to x + x + x3 + x = 1 X1, X2, x3, x4 0. list all basic sets. basic feasible solutions. the simplex algorithm). find and (do not use Check the value of the objective all basic feasible solutions. at the problem. to all function solve Determine the standard deviation given the following Economic State Probability Return Fast Growth 0.3 50% Slow Growth 0.5 30% Recession 0.2-15% Select one: a. 22.7156% b. 8.2564% c. 7% d. 5.16% e. 26.4575% which of the following is not an element of inventory holding costs? question 14 options: capital cost investment cost theft/ pilferage unit cost obsolescence cost Medilab Pharmaceuticals had EBIT of $331 million in 2016. In addition, Medilab had interest expenses of $157 million and a corporate tax rate of 30%. a. What is Medilab's 2016 net profit? b. What is the total of Medilab's 2016 net profit plus interest payments? c. If Medilab had no interest expenses, what would its 2016 net profit have been? How does it compare to your answer in part b? d. What is the amount of Medilab's interest tax shield in 2016? _____ can be outputs from previous processes, and outputs can be _____ in the next process. a. inputs, outputs b. outputs, outputs c. inputs, inputs d. outputs, inputs Estimate the derivative using forward finite divided difference applying both truncated and more accurate formula using xi = 0.5 and step sizes of ha=0.25 and ha=0.125 4x + 2x2 + x3 = 1 f(x) = 5 + 3sinx 2x1 + x2 + x3 = 4 2x1 + 2x2 + x3 = 3 This figure is made up of a triangle and a semicircle.What is the area of the figure?Use 3.14 for .Enter your answer, as a decimal, in the box.