Answer:
Your answer of coplanar is correct
Step-by-step explanation:
A skew line are 2 lines that aren't parallel and do not intersect.
Since there are arrows on either end of AC and RS , it mean those lines continue, and they will eventually intersect.
It is also not the other 2 clearly, since they do intersect and they don't make a 90° angle
So yes,
The answer is Coplanar
Hope this helps.
what is the wavelength of a wave that has a frequency of 15 Hz and a speed of 2 m/s?
Wavelength=speed/frequency
=2/15
=0.1333 m
Multiply by 10: 0.003, 0.3 30, 300
Answer:
0.003*10=0.03
0.3*10=3
30x10=300
300x10=3000
Step-by-step explanation:
Multiply each by 10
Answer:
0.03 , 3, 300, 3,000
Step-by-step explanation:
every time you multiply a decimal by 10 you move the decimal to the right once , on a whole number you just add another zero
Calculus AB Homework, does anyone know how to do this...
(a) f(x) is continuous at x = 1 if the limits of f(x) from either side of x = 1 both exist and are equal:
[tex]\displaystyle \lim_{x\to1^-}f(x) = \lim_{x\to1} (2x-x^2) = 1[/tex]
[tex]\displaystyle \lim_{x\to1^+}f(x) = \lim_{x\to1} (x^2+kx+p) = 1 + k + p[/tex]
So we must have 1 + k + p = 1, or k + p = 0.
f(x) is differentiable at x = 1 if the derivative at x = 1 exists; in order for the derivative to exist, the following one-sided limits must also exist and be equal:
[tex]\displaystyle \lim_{x\to1^-}f'(x) = \lim_{x\to1^+}f'(x)[/tex]
Note that the derivative of each piece computed here only exists on the given open-ended domain - we don't know for sure that the derivative *does* exist at x = 1 just yet:
[tex]f(x) = \begin{cases}2x-x^2 & \text{for }x\le1 \\ x^2+kx+p & \text{for }x>1\end{cases} \implies f'(x) = \begin{cases}2 - 2x & \text{for }x < 1 \\ ? & \text{for }x = 1 \\ 2x + k & \text{for }x > 1 \end{cases}[/tex]
Compute the one-sided limits of f '(x) :
[tex]\displaystyle \lim_{x\to1^-}f'(x) = \lim_{x\to1} (2 - 2x) = 0[/tex]
[tex]\displaystyle \lim_{x\to1^+}f'(x) = \lim_{x\to1} (2x+k) = 2 + k[/tex]
So if f '(1) exists, we must have 2 + k = 0, or k = -2, which in turn means p = 2, and these values tell us that we have f '(1) = 0.
(b) Find the critical points of f(x), where its derivative vanishes. We know that f '(1) = 0. To assess whether this is a turning point of f(x), we check the sign of f '(x) to the left and right of x = 1.
• When e.g. x = 0, we have f '(0) = 2 - 2•0 = 2 > 0
• When e.g. x = 2, we have f '(2) = 2•2 - 2 = 2 > 0
The sign of f '(x) doesn't change as we pass over x = 1, so this critical point is not a turning point. However, since f '(x) is positive to the left and right of x = 1, this means that f(x) is increasing on (-∞, 1) and (1, ∞).
(c) The graph of f(x) has possible inflection points wherever f ''(x) = 0 or is non-existent. Differentiating f '(x), we get
[tex]f'(x) = \begin{cases}2-2x & \text{for }x<1 \\ 0 & \text{for }x=1 \\ 2x+k & \text{for }x>1\end{cases} \implies f''(x) = \begin{cases}- 2 & \text{for }x < 1 \\ ? & \text{for }x = 1 \\ 2 & \text{for }x > 1 \end{cases}[/tex]
Clearly f ''(x) ≠ 0 if x < 1 or if x > 1.
It is also impossible to choose a value of f ''(1) that makes f ''(x) continuous, or equivalently that makes f(x) twice-differentiable. In short, f ''(1) does not exist, so we have a single potential inflection point at x = 1.
From the above, we know that f ''(x) < 0 for x < 1, and f ''(x) > 0 for x > 1. This indicates a change in the concavity of f(x), which means x = 1 is the only inflection point.
The weight of a basketball is normally distributed with a mean of 17oz and a standard deviation of 2oz.
Suppose 500 different basketballs are in a warehouse. About how many basketballs weigh more than 19oz?
O 20
O 40
O 80
O 100
Find the area and circumference of this circle. Write your answer correct to the nearest hundredth
Answer:
Step-by-step explanation:
So we have that the diameter is 30, meaning the radius is 15.
Area: [tex]A=\pi r^{2}=\pi \cdot 15^{2}=225\pi \approx 706.86[/tex]
Circumference: [tex]C=2\pi r=2\pi \cdot 15 = 30\pi \approx 94.25[/tex]
HELP URGENT!!!
Find the area of the parallelogram
Answer:
60 in²
Step-by-step explanation:
Area of parallelogram = base x height
= 10 in x 6 in
= 60 in²
The area of the parallelogram is 60in².
The radius of a circle is 1 meter. What is the area?
r=1 m
Give the exact answer in simplest form.
Answer:
A≈3.14m²
Step-by-step explanation:
Answer:
Area of Circle =
\begin{gathered}\pi {r}^{2} \\ = \pi( {1}^{2} ) \\ = 1\pi \\ = \pi {m}^{2} \end{gathered}
πr
2
=π(1
2
)
=1π
=πm
2
which systems have infinite solution? check all that apply
A. y = 0.5x + 2.75 and 2y = x + 2.75
B. y = 0.5x + 2.75 and y - 0.5x = 2.75
C. y = 0.5x + 2.75 and 0.5x + y = 2.75
D. y = 0.5x + 2.75 and y = 0.5(x + 5.5)
E. y = 0.5x + 2.75 and y = -2(-0.25x) + 2.75
Answer:
B
Step-by-step explanation:
Answer:
Ok got it
Step-by-step explanation:
the answers are y = 0.5x + 2.75 and y – 0.5x = 2.75
y = 0.5x + 2.75 and y = 0.5(x + 5.5)
y = 0.5x + 2.75 and y = –2(–0.25x )+ 2.75
9. Suppose you are comparing frequency data for two different
groups, 25 managers and 150 blue collar workers. Why would a
relative frequency distribution be better than a frequency
distribution?
ents
Answer:
A relative frequency distribution is better for comparison between groups whose numbers are different, since ratios are readily comparable.
Step-by-step explanation:
PLEASE HELP ME QUICKKK, FIRST CORRECT PERSON GETS BRAINLIEST
Step-by-step explanation:
let x represent the monthly budget.
13 % of x = $ 2600
(13/100) * x = $2600
13/100 = $2600/x
thus, the answer is D.
hope this helps you!
-s.
What is the value of triangle?
Answer:
the area of the triangle is 36
4) In addition to using graphs, you should also be able to use a table to determine values in an equation. Fill in the following table based on your equation in question three defined the cost for these amount of loaves of bread that you buy.
(Equation is question 3 is y=1.60x+0)
5) where would you break even? In other words, how many loaves of bread would you need to buy where it would be the same cost to make those loaves of bread yourself? Look for the intersection of the two equations when you graph them on desmos.
How much would it cost to buy that many loaves of bread?
6) Give three advantages and three disadvantages to buying a bread maker. Would you choose to buy the bread maker or not? How did you make your decision?
It would take 125 loaves at a cost of $200 for the breadmaker and store bought bread to cost the same.
Linear equationA linear equation is in the form:
y = mx + b
where y, x are variables, m is the rate of change and b is the y intercept.
Let x represent the rate of cost of one loaf and y represent the total cost, hence:
y = 0.8x + 100
The rate of cost of one loaf is $0.8 and the start up cost is $100.
For the second bread it is given by:
y = 1.6x
For both cost to be the same:
1.6x = 0.8x + 100
x = 125
a = 1.6(4) = $6.4
b = 1.6(8) = $12.8
c = 1.6(12) = $19.2
It would take 125 loaves at a cost of $200 for the breadmaker and store bought bread to cost the same.
Find out more on Linear equation at: https://brainly.com/question/13763238
Consider five circles with radii of 1, 2, 4, 8, and 16 inches.
a. Complete the table.
b. Compare the areas and circumferences. What happens to the circumference of a circle when you double the radius? What happens to the area?
c. What happens when you triple the radius?
Please answer all questions or just the table, because I need help. Thanx!
Answer:
a) 2. 4pi (in) , 4pi
3. 8pi , 16pi
4. 16pi, 64pi
5. 32 pi , 256pi
Step-by-step explanation:
b) when radius increase , the areas and circumferences increase to
circumference = 2 pi * radius ; so if you double the radius , circumference will be double
area = pi * radius * radius ; if you double the radius , area will be 2^2 or 4 times
c) circumference will be triple and
area will be 3^2 or 9 times
How can you use
ratios to determine if a
relationship is
proportional?
Proportions are corresponding assuming they address a similar relationship. One method for checking whether two proportions are corresponding is to keep in touch with them as divisions and afterward decrease them. Assuming the decreased divisions are something similar, your proportions are relative.
Answer:
Ratios are proportional if they represent the same relationship. One way to see if two ratios are proportional is to write them as fractions and then reduce them. If the reduced fractions are the same, your ratios are proportional.
Step-by-step explanation:
Find the difference between 3x+5 and 10x-4.
Answer:
7x+9
Step-by-step explanation:
10x- 3x=7x
5--4=9
so you just bring them together so 7x+9
6.Name two streets that intersect.
7.Name two streets that are parallel
Answer:
6.Elm and Oak intersect
7.Birch and Maple are parallel
Step-by-step explanation:
If Elm and Oak continue, they will intersect with each other
Birch and Maple have same distance consistently between them
A recipe of beef stew serves 2 people and calls for 0.75 pounds of carrots. How many pounds of carrots would you need to serve 10 people in the restaurant? Explain how you found your answer.
Answer:
3.75 pounds of carrots
Step-by-step explanation:
Multiply 0.75 by 5 and get 3.75
Answer:
3.75 lbs of carrots
Step-by-step explanation:
10/2=5
.75*5=3.75
You basically just need to multiply your serving by 5
Enter the expression 7 x 2 − 7 x − 10
Answer:
7x - 10 is the simplify of the expression
If you was asking about the simplify of the expression it is 7x - 10
Find the value of N in 26%×N=78
Answer:
26%×N=78
Reduce the fraction 26/100 to lowest terms by extracting and cancelling out 2.
13
– N=78
50
multiply both sides by 15/30 the reciprocal of 13/50
N=78× (50/13)
Express 78×(50/13) as a single fraction
N=78×50
———
13
multiply 78 and 50 to get 3900.
N=3900
———
13
Divide 3900 by 13 to get 300.
N=300
So the answer is N=300
Step-by-step explanation:
#Carry on learning
express 7 1/2% to fraction
Answer:
15/2 is the answer to the question
Answer:
15/2
Step-by-step explanation:
7x - 5y = -24
-9x + 5y = 18
Answer:
Nothing further can be done with this topic. Please check the expression entered or try another topic.
7x−5y=−24−9x+5y=187x-5y=-24-9x+5y=18
Answer:
Assuming this is a system of equations...
Point form > (3, 9)
Equation form > x = 3, y = 9
Step-by-step explanation:
So we need to solve for x in 7x - 5y = -24
Add 5y to both sides
7x = -24 + 5y
-9x + 5y = 18
Divide each term by 7
7x/7 = -24/7 + 4y/7
-9x + 5y = 18
x = -24/7 + 5y/7
-9x + 5y = 18
Now we need to replace all occurences of x with -24/7 + 5y/7
-9(-24/7 + 5y/7) + 5y = 18
x = -24/7 + 5y/7
So lets focus on simplifying -9(-24/7 + 5y/7) + 5y
Apply the distributive property
-9(-24/7) - 9 5y/7 + 5y = 18
Now multiply -9(-24/7)
So -1 by -9
9(24/7) - 9 5y/7 + 5y = 18
Combine 9 and 24/7
9 * 24/7 - 9 5y/7 + 5y = 18
Then Multiply 9 by 24
216/7 - 9 5y/7 + 5y = 18
Now we multiply -9 5y/7
So Combine -9 and 5y/7
216/7 + -9(5y)/7 + 5y = 18
Now Multiply 5 by -9
216/7 + -45y/7 + 5y = 18
Move the negative
216/7 - 45y/7 + 5y = 18
Now we need to multiply by 7/7 to make 5y a fraction with a common denom.
216/7 - 45y/7 + 5y * 7/7 = 18
Combine
216/7 + -45y + 5y * 7/7 = 18
Combine further
216 - 45y + 5y * 7/7 = 18
Multiply
216 - 45y + 35y
Add
216 - 10y/7 = 18
Factor 2 out of the equation
2(108) - 10y/7 = 18
Factor more
2(108) + 2(-5y)/7 = 18
Factor further
2(108 - 5y)/7 = 18
Now we want to solve for y in 2(108 - 5y)/7 = 18
Multiply both sides by 7 then simplify.
2(108 - 5y) * 7/7 = 18 * 7
2 * 108 + 2 (-5y) = 18 * 7
Multiply
216 + 2 (-5y) = 18 * 7
Multiply again
216 - 10y = 18 * 7
Reorder 216 and -10y
-10y + 216 = 18 * 7
Simplify the right side
-10y + 216 = 126
Now we need to solve for y
So lets move all terms not containing y to the right side.
-10y = 126 - 216 (Subtract 216 from both sides)
-10y = -90
Divide each term by -10
-10y/-10 = -90/-10
Simplify the left side
-90/10
And the right side
y = 9
x = -24/7 + 5y/7
Now replace y with 9
-24/7 + 5(9)/7
Simplify the right side
-24 + 5(9)/7
Multiply
-24 + 45
Add
21/7
x = 3
Therefore x = 3, y = 9 > (3, 9)
Rajeev started to move from point A towards point B exactly an hour after Rohit started from B in the opposite direction but at a speed twice as much as that of rohit.By the time rohit covers ⅙ of the distance between the point B and A Rajeev also covers the same distance.
Speed is the rate of change of distance over time
It takes Rohit 2 hours to cover the same distance
How to determine the timeRepresent Rajeev with A, and Rohit with B
Speed is calculated as:
[tex]Speed = \frac{Distance}{Time}[/tex]
Rohit covers 1/6 of the distance between point AB
So, we have:
[tex]S_B = \frac{AB/6}{T_B}[/tex]
Make T the subject
[tex]T_B = \frac{AB/6}{S_B}[/tex]
[tex]T_B = \frac{AB}{6S_B}[/tex]
Rajeev's speed is twice that of Rohit.
So, we have:
[tex]S_A = 2 * S_B[/tex]
[tex]S_A = \frac{AB}{T_A}[/tex]
So, the time taken by Rajiv to cover 1/6 of the distance is:
[tex]T_A = \frac{AB}{12S_B}[/tex]
The difference between the time is given as 1.
So, we have:
[tex]\frac{AB}{6S_B} - \frac{AB}{12S_B} = 1[/tex]
Multiply through by 12SB
[tex]2AB - AB = 12S_B[/tex]
[tex]AB = 12S_B[/tex]
Recall that:
[tex]T_B = \frac{AB}{6S_B}[/tex]
So, we have:
[tex]T_B =\frac{12S_B}{6S_B}[/tex]
[tex]T_B = 2[/tex]
Hence, it takes Rohit 2 hours to cover the same distance
Read more about speed at:
https://brainly.com/question/4931057
(1 point) Use differentials (or equivalently, a linear approximation) to approximate sin(56∘)
sin(56∘) as follows: Let ()=sin() and find the equation of the tangent line to () at a "nice" point near 56∘. Then use this to approximate sin(56∘).
Approximation =
Linear approximations are used to estimate functions using derivatives
The approximated value of sin(56 degrees) is 0.8429
How to approximate sin(56)The trigonometry expression is given as:
[tex]\sin(56^o)[/tex]
Convert 56 degrees to radians
[tex]56^o = \frac{56}{180}\pi[/tex]
To approximate, we make use of 45 degrees.
Where:
[tex]\sin(45^o) = \cos(45^o) = \frac{\sqrt 2}{2}[/tex]
Also, we have:
[tex]45^o= \frac{\pi}{4}[/tex]
And
[tex](\sin\ x)'= \cos\ x[/tex]
So, the approximation of sin(56 degrees) become:
[tex]\sin(56\°) = \sin(45\°) + (\frac{56}{180}\pi - \frac{\pi}{4}) *\cos(45\°)[/tex]
Substitute known values
[tex]\sin(56\°) = \frac{\sqrt 2}{2} + (\frac{56}{180}\pi - \frac{\pi}{4}) *\frac{\sqrt 2}{2}[/tex]
Take LCM
[tex]\sin(56\°) = \frac{\sqrt 2}{2} + \frac{56 - 45}{180}\pi *\frac{\sqrt 2}{2}[/tex]
[tex]\sin(56\°) = \frac{\sqrt 2}{2} + \frac{11}{180}\pi *\frac{\sqrt 2}{2}[/tex]
Solve the expression
[tex]\sin(56^o) = 0.8429[/tex]
Hence, the approximated value of sin(56 degrees) is 0.8429
Read more about linear approximation at:
https://brainly.com/question/26164627
There are 380 light bulbs lined up in a row in a long room.
Each bulb has its own switch and is currently switched off.
Each bulb is numbered consecutively from 1 to 380. You
first flip every switch. You then flip the switch on every
second bulb(turning off 2, 4,6...). You then flip the switch
on every third bulb (3, 6, 9...). This continues until you
have gone through the process 380 times.
Bulb 2 was activated 760 times throughout the process.
How to calculate how many times light bulb #2 was activated?To calculate how many times light bulb #2 was activated, we must identify how many times it is activated in each process.
Based on the information provided, bulb two has the following activity.
Power on oncePower off onceAccording to the above, bulb #2 is activated 2 times each process. So to know how many times it is activated in total, we must multiply the number of times it is activated in each process by the total number of processes (380).
380 × 2 = 760
Note: This question is incomplete because the question is missing. Here is the question:
After repeating this process 380 times, how many times was light bulb 2 activated?Learn more about light bubs in: https://brainly.com/question/4723473
It takes Jada 20 minutes to walk to school. It takes Andre 80 percentage as long to walk to school.How long does it take Andre to walk to school?
Answer:
16 minutes
Step-by-step explanation:
multiply 20 by 80% (20 times .80)
Determine the hcf and Lcf of 1820 and 3510
Answer:
To get the Least Common Multiple (LCM) of 1820 and 3510 we need to factor each value first and then we choose all the factors which appear in any column and multiply them:
1820: 2 2 5 7 13
3510: 2 3 3 3 5 13
LCM: 2 2 3 3 3 5 7 13
The Least Common Multiple (LCM) is: 2 x 2 x 3 x 3 x 3 x 5 x 7 x 13 = 49140
Help with math?Please? ANYONE
Answer:
(-1, 1)
Step-by-step explanation:
Hi there!
We want to solve the system of equations given as:
2x-3y=-5
3x+y=-2
Let's solve this equation by substitution, where we will set one variable equal to an expression containing the other variable, substitute the expression as the variable that it equals, solve for the other variable (the variable that the expression contains), and then use the value of the solved variable to find the value of the first variable
In the second equation, we have y by itself; therefore, if we subtract 3x from both sides, then we will get an expression that y is equal to.
So subtract 3x from both sides
y=-3x-2
Now substitute -3x-2 as y in the first equation.
It will look something like this:
2x - 3(-3x-2)=-5
Now do the distributive property.
2x+9x+6=-5
Combine like terms
11x+6=-5
Subtract 6 from both sides
11x=-11
Divide both sides by 11
x=-1
Now substitute -1 as x in the equation y=-3x-2 to solve for y:
y=-3(-1)-2
multiply
y=3-2
Subtract
y=1
The answer is x=-1, y=1; this can also be written as an ordered pair, which would be (-1, 1)
Hope this helps!
If you would like to see another problem for additional practice, take a look here: https://brainly.com/question/19212538
[tex]\begin{cases} 2x-3y=-5\\ 3x+y=-2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ 2x-3y=-5\implies 2x=3y-5\implies x=\cfrac{3y-5}{2} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{substituting on the 2nd equation}}{3\left( \cfrac{3y-5}{2} \right)+y=-2}\implies \cfrac{3(3y-5)}{2}+y=-2 \\\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{2}}{2\left( \cfrac{3(3y-5)}{2}+y \right)}=2(-2)\implies 3(3y-5)+2y=-4 \\\\\\ 9y-15+2y=-4\implies 11y-15=-4\implies 11y=11[/tex]
[tex]y=\cfrac{11}{11}\implies \blacktriangleright y=1 \blacktriangleleft \\\\\\ \stackrel{\textit{since we know that}}{x=\cfrac{3y-5}{2}}\implies x=\cfrac{3(1)-5}{2}\implies x=\cfrac{-2}{2}\implies \blacktriangleright x=-1 \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ ~\hfill (-1~~,~~1)~\hfill[/tex]
(1 point) Find the value of the constant c that makes the following function continuous on (-∞,∞).
Answer:
8/3
Step-by-step explanation:
To make this function be continuous, we need to make the one-sided limits of the function at x=3 equal.
this means that 3c+8=9c-8
8=6c-8
16=6c
c=16/6 = 8/3
The value of constant c that makes the given function continuous at (-∞ , ∞) is 6.
What do you mean by continuity of a function ?
Continuity of a function meant all the points in the given interval satisfy the function.
We know that the conditions for which a function is continuous at b = x is :
a) f(x) exists
b) [tex]\lim_{ b\to x}[/tex] or f(b) exists.
c) [tex]\lim_{b \to x}[/tex] f(b) = f(x)
We know that for any value of c , for b ∈ ( - ∞ , 3] the function is continuous and for b ∈ ( 3 , ∞) the function is continuous. So , for any value of c, the first two conditions are satisfied.
Now we need to check for the continuity of the function at b = 3.
or
[tex]\lim_{b \to 2}[/tex] f(b) = c × 3 + 8
or
[tex]\lim_{b \to 2}[/tex] f(b) = 3c + 8
Now , check for the continuity of the function for other interval at b = 3.
[tex]\lim_{b \to 2}[/tex] f(b) = c × 9 - 8
or
[tex]\lim_{b \to 2}[/tex] f(b) = 9c - 8
To be continuous both values should be equal.
i.e.,
3c + 8 = 9c - 8
The value of constant c will be :
6c = 18
or
c = 6
Therefore , the value of constant c that makes the given function continuous at (-∞ , ∞) is 6.
Learn more about continuity of a function here :
https://brainly.com/question/27896299
#SPJ2
Select the correct answer.
Which statement is true about this equation?
3(-y + 7) = 3(y + 5) + 6
A.
The equation has one solution, y = 0.
B.
The equation has one solution, y = -1.
C.
The equation has no solution.
D.
The equation has infinitely many solutions.
Answer:
one answer ( y=0 )
Step-by-step explanation:
solve for y
-3y + 21 = 3y + 15 + 6
-3y +21 = 3y +21
(-6y = 0)/-6
y=0
Answer:
A. The equation has one solution, y = 0.
Explanation:
3(-y + 7) = 3(y + 5) + 6
-3y + 21 = 3y + 15 + 6
-3y -3y = 21 - 21
-6y = 0
y = 0
In how many ways can first, second, and third prizes be awarded in a contest with 600 contestants?
Answer:
214,921,200 ways
Step-by-step explanation:
[tex]first \: price \: to \: one \: of \: the \: 600 \: \\ participant \\ so \: 600 \: choices \\ 2nd \: 599 \: choices \\ 3rd \: 598 \: choices \\ simplify \: 600 \times 599 \times 598 = \\ = 214,921,200[/tex]
Answer:
214,921,200 ways
Step-by-step explanation:
First = 600
Second = 599
Third = 598
Hence,
600 × 599 × 598
359400 × 598
214,921,200
Hence, in 214,921,200 different ways.
~Lenvy~