Explanation: Just as wavelength and frequency are related to light, they are also related to energy. The shorter the wavelengths and higher the frequency corresponds with greater energy. So the longer the wavelengths and lower the frequency results in lower energy. The energy equation is
E = hν.
Answer:
Explanation:
The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease. From these equations you may realize that as the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer.
Which of the following would provide the best evidence that genetic factors influence the growth of plants?
Cells pass through a g2 checkpoint before entering mitosis. Ideally, if dna damage is detected, the cells do not enter mitosis until the damage is repaired. Why is dna damage repaired before cells enter mitosis?.
11. Write the complete formula for photosynthesis:
Please help me please and thank you
6 CO2 + 6 H20 --> C6H12O6 + 6O2
6 Carbon dioxide + 6 Water -> Fructose + 6 Oxygen
what forms of hydrogen are MOST common on earth?
A. solid
B. gas
C. liquid
D. plasma
If a water source has a high pH (9-14) then it is considered?
Acidic
Basic
Not sure what basic means in this context but it would be considered alkaline and definitely not acidic so I'd say basic.
Dna polymerase links nucleotides into a chain by helping __.
Facts about preventing Hazardous Waste
Buy and use multipurpose cleaners.
Buy the least harmful product. Read labels.
Wipe up spills when they happen.
Hope this was Helpful! :)
Which one of water's unique properties allows living organisms to maintain a constant internal temperature?
A: it is held together by ionic bonds
B: it has a high specific heat
Answer:
B: it has a high specific heat
Why is water vital to living organisms?
(i need to get an answer ASAP!)
Answer:
it helps break down food
Explanation:
:)
In the human ABO blood type system, which genotype would result in red blood cells that exhibit codominance
How do organisms obtain what they need from the hydrosphere?
One parent has dimples, which is a dominant trait. The other parent has no dimples which is a recessive trait.
Dd
d
d
What can be predicted about their offsprings' chances of having dimples?
A 75% will have dimples
B 25% will have dimples
0% will have dimples
50% will have dimples
E 100% will have dimples
In the cross TT x Tt, which of the following is true about the offspring?
T = tall
t = short
tall is completely dominant to short
Then
construct a graph of the number of bacteria vs. time in hours.
Answer:
A bacteria culture starts with 500 bacteria and doubles in size every half hour. (a) How many bacteria are there after 3 hours? (b) How many bacteria are there after hours? (c) How many bacteria are there after 40 minutes? (d) Graph the population function and estimate the time for the population to reach 100,000.
Explanation:
it hope it helps
Although this single cell can produce the protein of interest, one cell
can't produce enough to really help people. How can this problem
be solved? Type your proposed solution below:
Answer:
Single-cell proteins develop when microbes ferment waste materials (including wood, straw, cannery, and food-processing wastes, residues from alcohol production, hydrocarbons, or human and animal excreta). They are found in very low concentrations, usually less than 5%. Engineers have developed ways to increase the concentrations including centrifugation, flotation, precipitation, coagulation, and filtration, or the use of semi-permeable membranes.
Explanation:
I believe this is right I'm sorry if it isn't
What happens along the neural pathway when the tongue detects the stimulus?
Nerve cells transmit taste signals to the brain.
Hypothesize how the breakup of Pangaea might have contributed to the evolutionary history of primates? PLS HELP
Pangea began to split around 200 million years ago, and the first primates ensued around 85 million years ago.
What is Pangea?When a three-pronged fracture developed between Africa, South America, and North America, Pangea first started to split apart. A volcanic rift zone was formed when magma welled up through the crustal weakness and rifting started.
As these split, continent-sized pieces of Pangea divided, volcanic explosions threw ash and volcanic debris throughout the terrain.
North America was being gradually pushed away from the rift zone and westward. A sequence of down-dropped fault blocks that closely parallel today's coastline were created as a result of the heavy continental crust that made up the new east coast collapsing.
Therefore, Pangea began to split around 200 million years ago, and the first primates ensued around 85 million years ago.
To learn more about Pangea, refer to the link:
https://brainly.com/question/8929008
#SPJ2
Which trait is DEFINITELY caused by genetics?
weight
height
tanned skin
the hardwork
Thank you
Answer: the height?
Explanation: not too sure on this one
Please help if u know
Answer:
False
Hope it help! Please mark as BRAINLIEST!
Put these steps in order
Unzip DNA
Editing and splicing
Translation
Transcription
Finished protein
For a mutation to affect evolution, it must:
a.
Provide a benefit to the organism
b. Involve more than one chromosome
C Be able to get passed from parent or offspring
d. Be neutralneither help nor harm the organism
Answer:
C
Explanation:
For mutation to occur
It must affect hereditary material
Is this right, please help me?
Yeah this is right answer
An example formed by metamorphic rocks would be _________________. (Choose 2)
Group of answer choices:
the Grand Canyon of Yellowstone
Red Rock Canyon
Cedar Breaks
the Grand Canyon
Bryce Canyon
the Himalayas
Answer:
the Grand Canyon of Yellowstone and the Himalayas
Explanation:
i dont know why tbh but those are the answers :p
An example formed by Metamorphic rocks would be the Grand Canyon of Yellowstone, and the Himalayas. Thus, the correct options are A and F.
What is Metamorphic rock?
Metamorphic rocks is a type of rock which have been substantially changed from their original form such as igneous, sedimentary, or earlier metamorphic form into mature metamorphic rock. The metamorphic rocks are formed when rocks are subjected to high temperature, pressure, hot mineral-rich fluids and, more commonly combination of these factors.
Some common examples of Metamorphic rocks are the Grand Canyon of Yellowstone and the Himalayas. The most common forms of metamorphic rocks are slates, schists and gneisses.
Therefore, the correct options are A and F.
Learn more about Metamorphic rocks here:
https://brainly.com/question/19930528
#SPJ2
What are the small air sacs called that exchange gases in the lungs? valves chambers alveoli nodes.
Answer:
I would go for alveoli
Explanation:
Cus
Based on information from the periodic table, what does this image
represent?
4 Protons
= 5 Neutrons
= 4 Electrons
Answer:
This is beryllium
Explanation:
If you had a periodic table to work off of, it would be a bit easier, because normally the protons and atomic number are the same.
Hope this helped!!
Use this space to map your dystrophin analogy. Make sure to include sarcolemma (cell membrane),
dystrophin, myofibril, and the relationship between structure and function
Please help answer this question
Abstract
The dystrophin complex stabilizes the plasma membrane of striated muscle cells. Loss of function mutations in the genes encoding dystrophin, or the associated proteins, triggers instability of the plasma membrane and myofiber loss. Mutations in dystrophin have been extensively cataloged providing remarkable structure-function correlation between predicted protein structure and clinical outcomes. These data have highlighted dystrophin regions necessary for in vivo function and fueled the design of viral vectors and now, exon skipping approaches for use in dystrophin restoration therapies. However, dystrophin restoration is likely more complex, owing to the role of the dystrophin complex as a broad cytoskeletal integrator. This review will focus on dystrophin restoration, with emphasis on the regions of dystrophin essential for interacting with its associated proteins and discuss the structural implications of these approaches.
Keywords: muscular dystrophy, dystrophin, spectrin repeat, exon skipping, sarcoglycan, sarcolemma
Go to:
INTRODUCTION
Muscular dystrophy is a collection of inherited diseases characterized by skeletal muscle weakness and degeneration. Muscular dystrophies are progressive disorders because over time healthy muscle fibers are lost and replaced by fibrosis and fat, making muscle tissues less able to generate force for everyday activity. As muscle wasting ensues, patients experience weakness, although muscle groups may be targeted differently in specific forms of muscular dystrophy. Respiratory failure, resulting from the weakening of breathing muscles, may limit lifespan in muscular dystrophy unless mechanical support is instituted. In some forms of muscular dystrophy, the heart is also affected resulting in cardiac complications including heart failure and irregular heart rhythms.
Duchenne muscular dystrophy (DMD) is one of the most common forms of muscular dystrophy. DMD is caused by recessive mutations in the dystrophin gene on X chromosome, affecting 1 in 3,500 to 5,000 newborn males worldwide (82). Boys with DMD show signs of muscle weakness early in childhood, typically between 2 and 7 years of age, and often lose ambulation around the time of puberty. DMD boys may have delayed development of motor skills such as sitting, walking and talking. Becker muscular dystrophy (BMD) is also caused by mutations in the DMD gene that encodes dystrophin. Individuals with BMD share similar signs and symptoms with DMD boys but with later onset and more varied time course. Like DMD, the heart can be affected in BMD.
The dystrophin gene is the largest known human gene, containing 79 exons and spanning > 2,200 kb, roughly 0.1% of the whole genome (96). The most common mutation responsible for DMD and BMD is a deletion spanning one or multiple exons. Such deletions account for 60–70% of all DMD cases and 80~85% BMD cases (58, 147). Point mutations are responsible for around 26% of DMD cases and 13% BMD cases. Exonic duplications account for 10 to 15% of all DMD cases and 5% to 10% BMD cases. Subexonic insertions, deletions, splice mutations and missense mutations account for the rest of the cases. DMD is associated with mutations that disrupt the protein’s reading frame causing premature stop codons. These mutated transcripts are susceptible to nonsense mediate decay, and the carboxy-terminal truncated protein products are also unstable and subject to degradation, leaving little or no protein produced in cells. In contrast, BMD patients usually have in-frame deletions that maintain the correct reading frame. Furthermore, nonsense mutations have been associated with both BMD and DMD. However, nonsense mutations associated with BMD are more prone to induce exon skipping than those found in DMD (59). The resulting protein products in BMD are internally truncated and expressed at lower levels than normal muscle. However, these internally truncated proteins are expressed at higher levels than in DMD and remain partially functional. Within one BMD affected family, three males carrying the same nonsense mutation in exon 29 displayed phenotypes from severe, mild to asymptomatic. This nonsense mutation is located in an exon recognition sequence in exon 29 and induces partial skipping of exon 29, producing an internally truncated dystrophin. A considerable amount s
Dystrophin is a complex structure that acts as an anchor, which connects the muscle cell cytoskeleton to the lattice of the protein and other extracellular matrix molecules.
What is dystrophin?It acts as a subsarcolemmal rod-shaped protein having a function to stabilize the sarcolemma, by connecting the extracellular matrix to the actin cytoskeleton through the dystrophin-associated glycoprotein complex.
This connection through the dystrophin-associated glycoprotein complex for sarcolemma maintains muscle cells from contraction-induced damage.
Dystrophin myofibril is a protein complex located between the sarcolemma and the outermost layer of myofilaments in the muscle fiber (myofiber). This is located at the muscle sarcolemma.
Therefore, dystrophin is a complex structure that connects the muscle cell cytoskeleton to the extracellular matrix.
Learn more about dystrophin, here:
https://brainly.com/question/30462170
#SPJ2
What is biogeography & how does it
provide evidence of evolution?
Answer: Biogeography is the study of the geographical distribution of plants, animals, and other forms of life. (Second part of question is in explanation)
Explanation: Biogeography gives information about how as well as when species might have matured. Fossils provide evidence of extended evolutionary changes, noting the earlier actuality of species that are now extinct.
What percentage of the water entering the small intestine is absorbed by the small intestine?.
ancient Greeks believed the body has four humors blood phlegm yellow bile and black bile if the Greeks were aware of modern biological practices what would their humours be responsible for
if the Greeks had knowledge of modern biological practices the humors responsible for fluids. nowadays we know that fluids are those substances that are permanently in the body and whose production does not depend on external stimuli.
What is the theory of the 4 Hippocrates humors?The Hippocratic theory of the four humors, present in the work On the Nature of Man, constitutes the human body from four fluids:
bloodphlegmyellow bile and black bile.According to the treaty, health would be maintained by a balance between these four humors.
With this information, we know that fluids are those substances that are permanently in the body and whose production does not depend on external stimuli.
Learn more about Humor in brainly.com/question/11513133
Answer:
transporting anitbodies
Explanation:
Someone please help with this. It has to be at least a paragraph long answer
Answer:
during meiosis, an event known as chromosomal crossing over sometimes occurs as a part of recombination. In this process, a region of one chromosome is exchanged for a region of another chromosome, thereby producing unique chromosomal combinations that further divide into haploid daughter cells.