Given: ABCD is a parallelogram and D is the midpoint of AE
Prove: BD is congruent to CE

Given: ABCD Is A Parallelogram And D Is The Midpoint Of AEProve: BD Is Congruent To CE

Answers

Answer 1

The solution is:

The proof is given below.

Here, we have,

Given a parallelogram ABCD. Diagonals AC and BD intersect at E. We have to prove that AE is congruent to CE and BE is congruent to DE i.e diagonals of parallelogram bisect each other.

In ΔACD and ΔBEC

AD=BC              (∵Opposite sides of parallelogram are equal)

∠DAC=∠BCE       (∵Alternate angles)

∠ADC=∠CBE        (∵Alternate angles)

By ASA rule, ΔACD≅ΔBEC

By CPCT(Corresponding Parts of Congruent triangles)

AE=EC and DE=EB

Hence, AE is conruent to CE and BE is congruent to DE.

To learn more on parallelogram click:

brainly.com/question/6166074

#SPJ1

complete question:

Proving the Parallelogram Diagonal Theorem

Given ABCD is a parralelogam, Diagnals AC and BD intersect at E

Prove AE is conruent to CE and BE is congruent to DE


Related Questions

As reported by the Department of Agriculture in Crop Production, the mean yield of oats for U.S. farms is 58.4 bushels per acre. A farmer wants to estimate his mean yield using an organic method. He uses the method on a random sample of 25 1-acre plots and obtained a mean of 61.49 and a standard deviation of 3.754 bushels. Assume yield is normally distributed.
Refer to problem 2. Assume now that the standard deviation is a population standard deviation.
a. Find a 99% CI for the mean yield per acre, :, that this farmer will get on his land with the organic method.
b. Find the sample size required to have a margin of error of 1 bushel and a 99% confidence level?

Answers

The farmer would need to sample at least 108 1-acre plots to estimate the mean yield per acre with a margin of error of 1 bushel and a 99% confidence level.

What is Standard deviation ?

Standard deviation is a measure of how spread out a set of data is from the mean (average) value. It tells you how much the individual data points deviate from the mean. A smaller standard deviation indicates that the data points are clustered closer to the mean, while a larger standard deviation indicates that the data points are more spread out.

a. To find the 99% confidence interval (CI) for the mean yield per acre, we can use the formula:

CI = X' ± Zα÷2 * σ÷√n

where X' is the sample mean, σ is the population standard deviation, n is the sample size, and Zα÷2 is the critical value for a 99% confidence level, which can be found using a standard normal distribution table or calculator.

Zα÷2 = 2.576 (from a standard normal distribution table for a 99% confidence level)

Substituting the given values, we get:

CI = 61.49 ± 2.576 * 3.754÷√25

CI = 61.49 ± 1.529

CI = (59.96, 63.02)

Therefore, we are 99% confident that the true mean yield per acre for the farmer using the organic method is between 59.96 and 63.02 bushels.

b. To find the sample size required to have a margin of error of 1 bushel and a 99% confidence level, we can use the formula:

n = (Zα÷2 * σ÷E)²

where Zα÷2 is the critical value for a 99% confidence level (2.576), σ is the population standard deviation (which we assume to be 3.754), and E is the desired margin of error (1 bushel).

Substituting the given values, we get:

n = (2.576 * 3.754÷1)²

n ≈ 108

Therefore, the farmer would need to sample at least 108 1-acre plots to estimate the mean yield per acre with a margin of error of 1 bushel and a 99% confidence level.

To learn more about Standard deviation from given link.

https://brainly.com/question/13905583

#SPJ1

The mean of the following incomplete information is 16. 2 find the missing
frequencies. Class
Intervals
10-12 12-14 14-
16
16-
18
18-20 20-22 22-24 TOTAL
Frequencies 5 ? 10 ? 9 3 2 50

Answers

The missing frequency for the interval 10-12 is 21.

Let's call the missing frequencies as x and y for the intervals 10-12 and 16-18 respectively.

We know that the total number of observations is 50 and the mean is 16.

To find x and y, we can use the formula for the mean of grouped data:

Mean = (sum of (midpoint of each interval * frequency)) / (total number of observations)

16 = ((11+13)5 + (17+19)3 + 1410 + 202 + 21*y) / 50

Simplifying the above equation, we get:

800 + 21y = 800

y = 0

This means that the missing frequency for the interval 16-18 is 0.

To find the missing frequency for the interval 10-12, we can use the fact that the total number of observations is 50:

x + 5 + 10 + 9 + 3 + 2 + 0 = 50

x = 21

Therefore, the missing frequency for the interval 10-12 is 21.

So the complete frequency table is:

Class Intervals Frequencies

10-12 5 + 21 = 26

12-14 ?

14-16 10

16-18 0

18-20 9

20-22 3

22-24 2

TOTAL 50.

For similar question on frequency.

https://brainly.com/question/10613053

#SPJ11

URGENT PLS HELP!! Will give brainiest :)

Answers

you should put the question, there is not question to be answered?

consider the following differential equation to be solved by the method of undetermined coefficients. y(4) 2y″ y = (x − 4)2

Answers

The particular solution to the differential equation by the method of undetermined coefficients is [tex]y \_p(x) = (-6x^2 - 16x - 80) + e^{(2x)}(x^2 + x - 44).[/tex]

How to find differential equation using the method of undetermined coefficients?

To solve this differential equation using the method of undetermined coefficients, we assume that the particular solution takes the form:

[tex]y \_ p(x) = (Ax^2 + Bx + C) + e^{(2x)}(Dx^2 + Ex + F)[/tex]

where A, B, C, D, E, and F are constants to be determined.

To determine the values of these constants, we differentiate y_p(x) four times and substitute the result into the differential equation. We get:

[tex]y \_p(x) = Ax^2 + Bx + C + e^{(2x)}(Dx^2 + Ex + F)[/tex]

[tex]y\_p'(x) = 2Ax + B + 2e^{(2x)}(Dx^2 + Ex + F) + 2e^{(2x)}(2Dx + E)[/tex]

[tex]y \_p''(x) = 2A + 4e^{(2x)}(Dx^2 + Ex + F) + 8e^{(2x)}(Dx + E) + 4e^{(2x)(2D)}[/tex]

[tex]y\_p''(x) = 8e^{(2x)}(Dx^2 + Ex + F) + 24e^{(2x)(Dx + E)} + 16e^{(2x)(D)}[/tex]

[tex]y \_p^4(x) = 32e^{(2x)(Dx + E) }+ 32e^{(2x)(D)}[/tex]

Substituting these into the original differential equation, we get:

[tex](32e^{(2x)(Dx + E)} + 32e^{(2x)(D))} - 2(8e^{(2x)}(Dx^2 + Ex + F) + 24e^{(2x)(Dx + E)} + 16e^{(2x)(D))} + (Ax^{2 }+ Bx + C + e^{(2x)}(Dx^2 + Ex + F))(x - 4)^2 = (x - 4)^2[/tex]

Simplifying this expression, we get:

[tex](-6D + A)x^4 + (4D - 8E + B)x^3 + (4D - 16E + 4F - 32D + C + 16E - 32D)x^2 + (-8D + 24E - 16F + 64D - 32E)x + (32D - 32E) = x^2 - 8x + 16[/tex]

Comparing the coefficients of like terms, we get the following system of equations:

-6D + A = 0

4D - 8E + B = 0

-24D + 4F - 32D + C = 16

-8D + 24E - 16F + 64D - 32E = 0

32D - 32E = 0

Solving this system of equations, we get:

D = E = 1

A = -6

B = -16

C = -80

F = -44

Therefore, the particular solution to the differential equation is:

[tex]y \_p(x) = (-6x^2 - 16x - 80) + e^{(2x)}(x^2 + x - 44)[/tex]

The general solution to the differential equation is the sum of the particular solution and the complementary function, which is the solution to the homogeneous equation:

[tex]y'''' - 2y'' + y = 0[/tex]

The characteristic equation of this homogeneous equation is:

[tex]r^4 - 2r^2 + 1 = 0[/tex]

Factoring the characteristic equation, we get:

[tex](r^2 - 1)^[/tex].

The particular solution to the differential equation by the method of undetermined coefficients is [tex]y \_p(x) = (-6x^2 - 16x - 80) + e^{(2x)}(x^2 + x - 44).[/tex]

Learn more about differential equation.

brainly.com/question/31396200

#SPJ11

consider the function (x)=3−6x2 f ( x ) = 3 − 6 x 2 on the interval [−6,4] [ − 6 , 4 ] . Find the average or mean slope of the function on this interval, i.e. (4)−(−6)4−(−6) f ( 4 ) − f ( − 6 ) 4 − ( − 6 ) Answer: By the Mean Value Theorem, we know there exists a c c in the open interval (−6,4) ( − 6 , 4 ) such that ′(c) f ′ ( c ) is equal to this mean slope. For this problem, there is only one c c that works. c= c = Note: You can earn partial credit on this problem

Answers

The average slope of f(x) on the interval [-6,4] is equal to f'(3.5) = -12(3.5) = -42.

How to find the average or mean slope of the function on given interval?

The Mean Value Theorem (MVT) for a function f(x) on the interval [a,b] states that there exists a point c in (a,b) such that f'(c) = (f(b) - f(a))/(b - a).

In this problem, we are asked to find the average slope of the function f(x) = 3 - 6x² on the interval [-6,4]. The average slope is:

(f(4) - f(-6))/(4 - (-6)) = (3 - 6(4)² - (3 - 6(-6)²))/(4 + 6) = -42

So, we need to find a point c in (-6,4) such that f'(c) = -42. The derivative of f(x) is:

f'(x) = -12x

Setting f'(c) = -42, we get:

-12c = -42

c = 3.5

Therefore, the point c = 3.5 satisfies the conditions of the Mean Value Theorem, and the average slope of f(x) on the interval [-6,4] is equal to f'(3.5) = -12(3.5) = -42.

Learn more about average slope.

brainly.com/question/31376837

#SPJ11

to determine the entropy change for an irreversible process between states 1 and 2, should the integral ∫1 2 δq/t be performed along the actual process path or an imaginary reversible path? explain.

Answers

The integral along the actual process path will not accurately represent the maximum possible entropy change for the system.

To determine the entropy change for an irreversible process between states 1 and 2, the integral ∫1 2 δq/t should be performed along an imaginary reversible path. This is because entropy is a state function and is independent of the path taken to reach a particular state. Therefore, the entropy change between two states will be the same regardless of whether the process is reversible or irreversible.

However, performing the integral along an imaginary reversible path will give a more accurate measure of the entropy change as it represents the maximum possible work that could have been obtained from the system. In contrast, an irreversible process will always result in a lower amount of work being obtained due to losses from friction, heat transfer to the surroundings, and other factors.

Therefore, performing the integral along the actual process path will not accurately represent the maximum possible entropy change for the system.

To learn more about entropy here:

brainly.com/question/13135498#

#SPJ11

Suppose that {an}n-1 is a sequence of positive terms and set sn= m_, ak. Suppose it is known that: 1 lim an+1 11-00 Select all of the following that must be true. 1 ak must converge. 1 ak must converge to 1 must converge. {sn} must be bounded. {sn) is monotonic. lim, + 8. does not exist. ? Check work Exercise.

Answers

From the given information, we know that {an} is a sequence of positive terms, so all of its terms are greater than 0. We also know that sn = m∑ ak, which means that sn is a sum of a finite number of positive terms.

Now, let's look at the given limit: lim an+1 = 0 as n approaches infinity. This tells us that the terms of {an} must approach 0 as n approaches infinity since the limit of an+1 is dependent on the limit of an. Therefore, we can conclude that {an} is a decreasing sequence of positive terms. Using this information, we can determine the following:- ak must converge: Since {an} is decreasing and positive, we know that the terms of {ak} are also decreasing and positive. Therefore, {ak} must converge by the Monotone Convergence Theorem. - ak must converge to 0: Since {an} approaches 0 as n approaches infinity, we know that the terms of {ak} must also approach 0. Therefore, {ak} must converge to 0.
- {sn} must be bounded: Since {ak} converges to 0, we know that there exists some N such that ak < 1 for all n > N. Therefore, sn < m(N-1) + m for all n > N. This shows that {sn} is bounded above by some constant.
- {sn} is monotonic: Since {an} is decreasing and positive, we know that {ak} is also decreasing and positive. Therefore, sn+1 = sn + ak+1 < sn, which shows that {sn} is a decreasing sequence. - limn→∞ sn does not exist: Since {an} approaches 0 as n approaches infinity, we know that {sn} approaches a finite limit if and only if {ak} approaches a nonzero limit. However, we know that {ak} approaches 0, so {sn} does not approach a finite
Therefore, the correct answers
- ak must converge
- ak must converge to 0
- {sn} must be bounded
- {sn} is monotonic
- limn→∞ sn does not exist

Learn more about finite number here:brainly.com/question/1622435

#sPJ11

find the derivative of the function. f(x) = (9x6 8x3)4

Answers

The derivative of the function f(x) = (9[tex]x^{6}[/tex] + 8x³)³ is f'(x) = 4(9[tex]x^{6}[/tex] + 8x³)³(54x³ + 24x²).

To find the derivative of the function f(x) = (9x² + 8x³)³, you need to apply the Chain Rule. The Chain Rule states that the derivative of a composite function is the derivative of the outer function times the derivative of the inner function. In this case, let u = 9x + 8x.

First, find the derivative of the outer function with respect to u: d( u³ )/du = 4u³.
Next, find the derivative of the inner function with respect to x: d(9x² + 8x³)/dx = 54x³ + 24x².

Know more about derivative of the function here:

https://brainly.com/question/25752367

#SPJ11

Julie is using the set {7,8,9,10,11} to solve the inequality shown. 2h-3>15 Select all of the solutions to the inequality.

Answers

Answer:

10,11

Step-by-step explanation:

Solving inequality:

Givne set: {7, 8 , 9 , 10 , 11}

To solve the inequality, isolate 'h'.

        2h - 3 > 15

Add 3 to both sides,

     2h - 3 + 3 > 15 + 3

               2h  > 18

Divide both sides by 2,

                [tex]\sf \dfrac{2h}{2} > \dfrac{18}{2}[/tex]

                 h > 9

h = {10 , 11}

how many partitions of 2 parts can be amde of {1,2,...100}

Answers

There are [tex](1/2) * (2^{100} - 2)[/tex] partitions of {1, 2, ..., 100} into two parts.

How to find the number of partitions of {1, 2, ..., 100} into two parts?

We can use the following formula:

Number of partitions = (n choose k)/2, where n is the total number of elements, and k is the number of elements in one of the two parts.

In this case, we want to divide the set {1, 2, ..., 100} into two parts, each with k elements.

Since we are not distinguishing between the two parts, we divide the total number of partitions by 2.

The number of ways to choose k elements from a set of n elements is given by the binomial coefficient (n choose k).

So the number of partitions of {1, 2, ..., 100} into two parts is:

(100 choose k)/2

where k is any integer between 1 and 99 (inclusive).

To find the total number of partitions, we need to sum this expression for all values of k between 1 and 99:

Number of partitions = (100 choose 1)/2 + (100 choose 2)/2 + ... + (100 choose 99)/2

This is equivalent to:

Number of partitions = (1/2) * ([tex]2^{100}[/tex] - 2)

Therefore, there are (1/2) * ([tex]2^{100][/tex] - 2) partitions of {1, 2, ..., 100} into two parts.

Learn more about partitions of a set into two parts

brainly.com/question/18651359

#SPJ11

exercise 0.2.7. let .y″ 2y′−8y=0. now try a solution of the form y=erx for some (unknown) constant .r. is this a solution for some ?r? if so, find all such .

Answers

The functions $y =[tex]e^{-4x}[/tex]$ and $y = [tex]e^{2x}[/tex] $ are solutions to the differential equation $y'' + 2y' - 8y = 0$.

Find if the function $y = e^{rx}$ is a solution to the differential equation $y'' + 2y' - 8y = 0$ can be substituted in place of $y$ and its derivatives?

To see if the function $y = e^{rx}$ is a solution to the differential equation $y'' + 2y' - 8y = 0$, we substitute it in place of $y$ and its derivatives:

y=[tex]e^{rx}[/tex]

y' = [tex]re^{rx}[/tex]

y" = [tex]r^{2} e^{rx}[/tex]

Substituting these expressions into the differential equation, we get:

[tex]r^{2} e^{rx} + 2re^{rx} - 8e^{rx} = 0[/tex]

Dividing both sides by $ [tex]$e^{rx}$[/tex] $, we get:

[tex]r^{2} + 2r - 8 = 0[/tex]

This is a quadratic equation in $r$. Solving for $r$, we get:

r = -4,2

Therefore, the functions $y =[tex]e^{-4x}[/tex]$ and $y = [tex]e^{2x}[/tex] $ are solutions to the differential equation $y'' + 2y' - 8y = 0$.

Learn more about differential equations

brainly.com/question/14620493

#SPJ11

Sam is competing in a diving event at a swim meet. When it's his turn, he jumps upward off
the diving board at a height of 10 meters above the water with a velocity of 4 meters per
second.
Which equation can you use to find how many seconds Sam is in the air before entering the
water?
If an object travels upward at a velocity of v meters per second from s meters above the
ground, the object's height in meters, h, after t seconds can be modeled by the formula
h = -4.9t² vt + s.
0 -4.9t² + 4t + 10
10 = -4.9t² + 4t
To the nearest tenth of a second, how long is Sam in the air before entering the water?

Answers

The time is 4.6 seconds when Sam enters the water again

How to solve the equation

So, we have the equation:

0 = -4.9t² + 4t + 10

Now, we can solve this quadratic equation for t using the quadratic formula:

t = (-b ± √(b² - 4ac)) / 2a

In our equation, a = -4.9, b = 4, and c = 10.

t = (-4 ± √(4² - 4(-4.9)(10))) / 2(-4.9)

t = (-4 ± √(16 + 196)) / (-9.8)

t = (-4 ± √212) / (-9.8)

The two possible values for t are:

t ≈ 0.444 (when Sam is at the surface of the water, just after jumping)

t ≈ 4.597 (when Sam enters the water again)

Read more on quadratic equation here:https://brainly.com/question/1214333

#SPJ1

Answer: The time is 4.6 seconds when Sam enters the water again

How to solve the equation

So, we have the equation:

0 = -4.9t² + 4t + 10

Now, we can solve this quadratic equation for t using the quadratic  formula:

t = (-b ± √(b² - 4ac)) / 2a

In our equation, a = -4.9, b = 4, and c = 10.

t = (-4 ± √(4² - 4(-4.9)(10))) / 2(-4.9)t = (-4 ± √(16 + 196)) / (-9.8)t = (-4 ± √212) / (-9.8)

The two possible values for t are:

t ≈ 0.444 (when Sam is at the surface of the water, just after jumping)

t ≈ 4.597 (when Sam enters the water again)


Read more on quadratic equation here:

brainly.com/question/1214333#SPJ1

Solve for missing angle. round to the nearest degree

Answers

Answer:

Set your calculator to degree mode.

[tex] { \sin }^{ - 1} \frac{18}{20} = 64 [/tex]

So theta measures approximately 64 degrees.

Use the Chain Rule to find the indicated partial derivatives.
u =
r2 + s2
, r = y + x cos t, s = x + y sin t
∂u
∂x
∂u
∂y
∂u
∂t
when x = 4, y = 5, t = 0
∂u
∂x
= ∂u
∂y
= ∂u
∂t
=

Answers

The partial derivatives of u with respect to x, y, and t are, [tex]\dfrac{\partial u}{\partial x}[/tex] = 22, [tex]\dfrac{\partial u}{\partial y}[/tex] = 18 and [tex]\dfrac{\partial u}{\partial t}[/tex] = 40.

We can use the chain rule to find the partial derivatives of u with respect to x, y, and t.

First, we will find the partial derivative of u with respect to r and s:

u = r² + s²

[tex]\dfrac{\partial u}{\partial r}[/tex] = 2r

[tex]\dfrac{\partial u}{\partial s}[/tex] = 2s

Next, we will find the partial derivatives of r with respect to x, y, and t:

r = y + xcos(t)

[tex]\dfrac{\partial r}{\partial x}[/tex] = cos(t)

[tex]\dfrac{\partial r}{\partial y}[/tex] = 1

[tex]\dfrac{\partial r}{\partial t}[/tex] = -xsin(t)

Similarly, we will find the partial derivatives of s with respect to x, y, and t:

s = x + ysin(t)

[tex]\dfrac{\partial s}{\partial x}[/tex] = 1

[tex]\dfrac{\partial s}{\partial y}[/tex] = sin(t)

[tex]\dfrac{\partial s}{\partial t}[/tex] = ycos(t)

Now, we can use the chain rule to find the partial derivatives of u with respect to x, y, and t:

[tex]\dfrac{\partial u}{\partial x} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial x} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial x}[/tex]

[tex]\dfrac{\partial u}{\partial x}[/tex] = 2r * cos(t) + 2s * 1

At x = 4, y = 5, t = 0, we have:

r = 5 + 4cos(0) = 9

s = 4 + 5sin(0) = 4

Substituting these values into the partial derivative formula, we get:

[tex]\dfrac{\partial u}{\partial x}[/tex] = 2(9)(1) + 2(4)(1) = 22

Similarly, we can find the partial derivatives with respect to y and t:

[tex]\dfrac{\partial u}{\partial y} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial y} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial y}[/tex]

[tex]\dfrac{\partial u}{\partial y}[/tex] = 2r * 1 + 2s * sin(t)

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2(9)(1) + 2(4)(0) = 18

[tex]\dfrac{\partial u}{\partial t} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial t} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial t}[/tex]

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2r * (-xsin(t)) + 2s * (ycos(t))

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2(9)(-4sin(0)) + 2(4)(5cos(0)) = 40

Therefore, the partial derivatives of u with respect to x, y, and t are:

[tex]\dfrac{\partial u}{\partial x}[/tex] = 22

[tex]\dfrac{\partial u}{\partial y}[/tex] = 18

[tex]\dfrac{\partial u}{\partial t}[/tex] = 40

To know more about partial derivatives, here

https://brainly.com/question/31397807

#SPJ4

In the sequence of numbers: 2/3, 4/7, x, 11/21, 16/31. the missing number x is:- 5/10 6/10 7/13 8/10

Answers

The missing number is 7/13.

We have the Sequence,

2/3, 4/7, x, 11/21, 16/31

As, the sequence in Numerator are +2, +3, +4, +5,

and, the sequence of denominator are 4, 6, 8 and 10.

Then, the numerator of missing fraction is

= 4 +3 = 7

and, denominator = 7 + 6 =13

Thus, the required number is 7/13.

Learn more about sequence here:

https://brainly.com/question/10049072

#SPJ1

Algebra 2, logs! Please help!

Answers

log₂(7) + log₂(8) is equal to log₂(56).

Describe logarithmic ?

Logarithmic is a mathematical concept that is used to describe the relationship between a number and its exponent. In particular, a logarithm is the power to which a base must be raised to produce a given number. For example, if we have a base of 2 and a number of 8, the logarithm (base 2) of 8 is 3, since 2 raised to the power of 3 equals 8.

Logarithmic functions are commonly used in mathematics, science, and engineering to describe exponential growth and decay, as well as to solve various types of equations. They are particularly useful in dealing with large numbers, as logarithms allow us to express very large or very small numbers in a more manageable way.

The logarithmic function is typically denoted as log(base a) x, where a is the base and x is the number whose logarithm is being taken. There are several different bases that are commonly used, including base 10 (common logarithm), base e (natural logarithm), and base 2 (binary logarithm). The properties of logarithmic functions, including rules for combining and simplifying logarithmic expressions, are well-defined and widely used in mathematics and other fields.

We can use the logarithmic rule that states that the sum of the logarithms of two numbers is equal to the logarithm of the product of the two numbers. That is,

log₂(7) + log₂(8) = log₂(7 × 8)

Now we can simplify the product of 7 and 8 to get:

log₂(7) + log₂(8) = log₂(56)

Therefore, log₂(7) + log₂(8) is equal to log₂(56).

To know more about function visit:

https://brainly.com/question/4952651

#SPJ1

In Problems 9–26, find a particular solution to the differential equation. 9. y" + 3y = -9 10. y" + 2y' - y = 10 11. y"(x) + y(x) = 2 12. 2x' + x = 312

Answers

For Problem 9, the characteristic equation is r² + 3 = 0, which has roots r = +/- i*sqrt(3).

Since this is a nonhomogeneous equation with a constant on the right-hand side, we guess a particular solution of the form y_p = A, where A is a constant. Plugging this into the differential equation, we get A = -3, so our particular solution is y_p = -3.

For Problem 10, the characteristic equation is r² + 2r - 1 = 0, which has roots r = (-2 +/- sqrt(8))/2 = -1 +/- sqrt(2).

Again, this is a nonhomogeneous equation with a constant on the right-hand side, so we guess a particular solution of the form y_p = B, where B is a constant. Plugging this into the differential equation, we get B = 10/3, so our particular solution is y_p = 10/3.

For Problem 11, the characteristic equation is r^2 + 1 = 0, which has roots r = +/- i.

This is a nonhomogeneous equation with a constant on the right-hand side, so we guess a particular solution of the form y_p = C, where C is a constant. Plugging this into the differential equation, we get C = 2, so our particular solution is y_p = 2.

For Problem 12, this is a first-order differential equation, so we can use the method of integrating factors.

The integrating factor is e^int(1/2, dx) = e^(x^2/4), so we multiply both sides of the equation by e^(x^2/4) to get (e^(x^2/4) x)' = 312 e^(x^2/4). Integrating both sides with respect to x, we get e^(x^2/4) x = 312/2 int(e^(x^2/4), dx) = 156 e^(x^2/4) + C, where C is a constant of integration. Solving for x, we get x = 156 e^(-x^2/4) + Ce^(-x^2/4). This is our particular solution.

To know more about differential equation click on below link :

https://brainly.com/question/31385688

#SPJ11

find y' and y'' for x2 4xy − 3y2 = 8.

Answers

The derivatives are:

[tex]y' = (2x + 4y) / (4x - 6y)[/tex]

[tex]y'' = [(4x - 6y)(2 + 4((2x + 4y) / (4x - 6y))) - (2x + 4y)(4 - 6((2x + 4y) / (4x - 6y)))] / (4x - 6y)^2[/tex]

To find y' and y'' for the given equation x^2 + 4xy - 3y^2 = 8, follow these steps:

Step 1: Differentiate both sides of the equation with respect to x.
For the left side, use the product rule for 4xy and the chain rule for -3y^2.
[tex]d(x^2)/dx + d(4xy)/dx - d(3y^2)/dx = d(8)/dx[/tex]

Step 2: Calculate the derivatives.
[tex]2x + 4(dy/dx * x + y) - 6y(dy/dx) = 0[/tex]

Step 3: Solve for y'.
Rearrange the equation to isolate dy/dx (y'):
[tex]y' = (2x + 4y) / (4x - 6y)[/tex]

Step 4: Differentiate y' with respect to x to find y''.
Use the quotient rule: [tex](v * du/dx - u * dv/dx) / v^2[/tex],

where u = (2x + 4y) and v = (4x - 6y).
[tex]y'' = [(4x - 6y)(2 + 4(dy/dx)) - (2x + 4y)(4 - 6(dy/dx))] / (4x - 6y)^2[/tex]

Step 5: Substitute y' back into the equation for y''.
[tex]y'' = [(4x - 6y)(2 + 4((2x + 4y) / (4x - 6y))) - (2x + 4y)(4 - 6((2x + 4y) / (4x - 6y)))] / (4x - 6y)^2[/tex]

This is the expression for y'' in terms of x and y.

Learn more about differentiation:https://brainly.com/question/25081524

#SPJ11

A regular octagon has an area of 48 inches squared. If the scale factor of this octagon to a similar octagon is 4:5, then what is the area of the other pentagon?

Answers

The area of the other octagon is 75 square inches.

To find the area of the other octagon, we can use the concept of scale factors. The scale factor of 4:5 tells us that corresponding lengths of the two similar octagons are in a ratio of 4:5.

Since the scale factor applies to the lengths, it will also apply to the areas of the two octagons. The area of a shape is proportional to the square of its corresponding side length.

Let's assume the area of the other octagon (with the scale factor of 4:5) is A.

The ratio of the areas of the two octagons can be expressed as:

(Area of the given octagon) : A = (Side length of the given octagon)^2 : (Side length of the other octagon)^2

48 : A = (4/5)^2

48 : A = 16/25

Cross-multiplying:

25 * 48 = 16A

1200 = 16A

Dividing both sides by 16:

75 = A

Therefore, the area of the other octagon is 75 square inches.

For more such questions on area, click on:

https://brainly.com/question/22972014

#SPJ8

Bus stops A, B, C, and D are on a straight road. The distance from A to D is exactly 1 km. The distance from B to C is 2 km. The distance from B to D is 3 km, the distance from A to B is 4 km, and the distance from C to D is 5 km. What is the distance between stops A and C?

Answers

Okay, let's think this through step-by-step:

* A to D is 1 km

* B to C is 2 km

* B to D is 3 km

* A to B is 4 km

* C to D is 5 km

So we have:

A -> B = 4 km

B -> C = 2 km

C -> D = 5 km

We want to find A -> C.

A -> B is 4 km

B -> C is 2 km

So A -> C = 4 + 2 = 6 km

Therefore, the distance between stops A and C is 6 km.

find the limit. use l'hospital's rule where appropriate. if there is a more elementary method, consider using it. lim x→7 x − 7 x2 − 49

Answers

The limit of the given expression as x approaches 7 is 1/14.

How to find the limit?

To evaluate the limit:

lim x → 7 (x - 7) / ([tex]x^2[/tex] - 49)

We can see that this is an indeterminate form of type 0/0, since both the numerator and denominator approach 0 as x approaches 7. We can use L'Hospital's rule to evaluate this limit:

lim x → 7 (x - 7) / ([tex]x^2[/tex] - 49)

= lim x → 7 1 / (2x) [by applying L'Hospital's rule once]

= 1 / 14 [substituting x = 7]

Therefore, the limit of the given expression as x approaches 7 is 1/14.

Learn more about l'hospital's rule

brainly.com/question/14105620

#SPJ11

mong the following pairs of sets, identify the ones that are equal. (Check all that apply.) Check All That Apply (1,3, 3, 3, 5, 5, 5, 5, 5}, {5, 3, 1} {{1} }, {1, [1] ) 0.{0} [1, 2], [[1], [2])

Answers

Among the following pairs of sets, I'll help you identify the ones that are equal:

1. {1, 3, 3, 3, 5, 5, 5, 5, 5} and {5, 3, 1}:

These sets are equal because in set notation, repetitions are not counted.

Both sets have the unique elements {1, 3, 5}.

2. {{1}} and {1, [1]}:

These sets are not equal because the first set contains a single element which is the set {1}, while the second set contains two distinct elements, 1 and [1]

(assuming [1] is a different notation for an element).

3. {0} and [1, 2]:

These sets are not equal because they have different elements. The first set contains the single element 0, while the second set contains the elements 1 and 2.

4. [[1], [2]]:

This is not a pair of sets, so it cannot be compared for equality.

In summary, the equal pair of sets among the given options is {1, 3, 3, 3, 5, 5, 5, 5, 5} and {5, 3, 1}.

To know more about sets:

https://brainly.com/question/8053622

#SPJ11

Suppose a binary tree has leaves l1, l2, . . . , lMat depths d1, d2, . . . , dM, respectively.
Prove that Σ 2^-di <= 1.

Answers

In a binary tree with leaves l1, l2, ..., lM at depths d1, d2, ..., dM respectively, the sum of [tex]2^-^d^_i[/tex] for all leaves is always less than or equal to 1: Σ  [tex]2^-^d^_i[/tex] <= 1.

In a binary tree, each leaf node is reached by following a unique path from the root. Since it is a binary tree, each internal node has two child nodes.

Consider a full binary tree, where all leaves have the maximum number of nodes at each depth. For a full binary tree, the total number of leaves is  [tex]2^d[/tex] , where d is the depth.

Each leaf node contributes [tex]2^-^d[/tex] to the sum. Thus, the sum for a full binary tree is Σ  [tex]2^-^d[/tex] = (2⁰ + 2⁰ + ... + 2⁰) = [tex]2^d[/tex] * [tex]2^-^d[/tex]  = 1. Now, if we remove any node from the full binary tree, the sum can only decrease, as we are reducing the number of terms in the sum. Hence, for any binary tree, the sum Σ [tex]2^-^d^_i[/tex]  will always be less than or equal to 1.

To know more about binary tree click on below link:

https://brainly.com/question/13152677#

#SPJ11

change f(x) = 40(0.96)x to an exponential function with base e. and approximate the decay rate of f.

Answers

The decay rate of f is approximately 4.0822% per unit of x.

How to change [tex]f(x) = 40(0.96)^x[/tex] to an exponential function?

To change [tex]f(x) = 40(0.96)^x[/tex] to an exponential function with base e, we can use the fact that:

[tex]e^{ln(a)} = a[/tex], where a is a positive real number.

First, we can rewrite 0.96 as[tex]e^{ln(0.96)}[/tex]:

[tex]f(x) = 40(e^{ln(0.96)})^x[/tex]

Then, we can use the property of exponents to simplify this expression:

[tex]f(x) = 40e^{(x*ln(0.96))}[/tex]

This is an exponential function with base e.

To approximate the decay rate of f, we can look at the exponent x*ln(0.96).

The coefficient of x represents the rate of decay. In this case, the coefficient is ln(0.96).

Using a calculator, we can approximate ln(0.96) as -0.040822. This means that the decay rate of f is approximately 4.0822% per unit of x.

Learn more about exponential function

brainly.com/question/14355665

#SPJ11

Find the missing dimension of the parallelogram.

Answers

Answer:

b=7

Step-by-step explanation:

We know that for a parallelogram, The formula is a=bh

so plug it in

28=b4

Divide both sides by 4:

b=7

Answer:

b = 7 m

Step-by-step explanation:

the area (A) of a parallelogram is calculated as

A = bh ( b is the base and h the perpendicular height )

here h = 4 and A = 28 , then

28 = 4b ( divide both sides by 4 )

7 = b

The enrollment at high school R has been increasing by 20 students per year. Currently high school R has 200 students attending. High School T currently has 400 students, but it's enrollment is decreasing in size by an average of 30 students per year. If the two schools continue their current enrollment trends over the next few years, how many years will it take the schools to have the same enrollment?

Answers

The number of years it will  take the schools to have the same enrollment is 4 years.

We are given that;

The enrollment at high school R has been increasing by 20 students per year.

Currently high school R has 200 students attending.

High school T currently has 400 students, but it’s enrollment is decreasing in size by an average of 30 students per year.

Let x be the number of years from now, and y be the enrollment of the schools. Then we have:

y=200+20x

for high school R, and

y=400−30x

for high school T. To find when the schools have the same enrollment, we set the two equations equal to each other and solve for x:

200+20x=400−30x

Adding 30x to both sides, we get:

50x=200

Dividing both sides by 50, we get:

x=4

At that time, they will both have y = 200 + 20(4) = 280 students.

Therefore, by the linear equation the answer will be 4 years.

Learn more about linear equations;

https://brainly.com/question/10413253

#SPJ1

To find the length of the curve defined by y=3x^5 + 15x from the point (-2,-126) to the point (3,774), you'd have to compute∫^b_a f(x)dx where a = ______, b=______and f(x) =____>

Answers

The length of the curve L is [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex] where a = -2, b= 3 and f'(x) =  [tex]15x^4[/tex] + 15.

To find the length of the curve defined by y = [tex]3x^5[/tex] + 15x from the point (-2, -126) to the point (3, 774), you'd actually need to compute the arc length using the formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(f'(x)^2)} } \, dx[/tex]
First, find the derivative of the function, f'(x):
f'(x) = d([tex]3x^5[/tex] + 15x)/dx = [tex]15x^4[/tex] + 15
Now, substitute f'(x) into the arc length formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(15x^4+15)^2)} } \, dx[/tex]
Here, the points given are (-2, -126) and (3, 774). Therefore, the limits of integration are:
a = -2
b = 3
So the final integral to compute the length of the curve is:
L = [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex]

To learn more about function, refer:-

https://brainly.com/question/12431044

#SPJ11

The length of the curve L is [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex] where a = -2, b= 3 and f'(x) =  [tex]15x^4[/tex] + 15.

To find the length of the curve defined by y = [tex]3x^5[/tex] + 15x from the point (-2, -126) to the point (3, 774), you'd actually need to compute the arc length using the formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(f'(x)^2)} } \, dx[/tex]
First, find the derivative of the function, f'(x):
f'(x) = d([tex]3x^5[/tex] + 15x)/dx = [tex]15x^4[/tex] + 15
Now, substitute f'(x) into the arc length formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(15x^4+15)^2)} } \, dx[/tex]
Here, the points given are (-2, -126) and (3, 774). Therefore, the limits of integration are:
a = -2
b = 3
So the final integral to compute the length of the curve is:
L = [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex]

To learn more about function, refer:-

https://brainly.com/question/12431044

#SPJ11

in each of the problems 7 through 9 find the inverse laplace transform of the given function by using the convolution theoremf(s)=1/(s +1)^2 (s^2+ 4)

Answers

The inverse Laplace transform of f(s) is: f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t)

What is convolution theorem?

The convolution theorem is a fundamental result in mathematics and signal processing that relates the convolution operation in the time domain to multiplication in the frequency domain.

To find the inverse Laplace transform of the given function, we will use the convolution theorem, which states that the inverse Laplace transform of the product of two functions is the convolution of their inverse Laplace transforms.

We can rewrite the given function as:

f(s) = 1/(s+1)² * (s² + 4)

Taking the inverse Laplace transform of both sides, we get:

[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} *[tex]L^{-1}[/tex]{s² + 4}

We can use partial fraction decomposition to find the inverse Laplace transform of 1/(s+1)²:[tex]e^{-t}[/tex]

1/(s+1)² = d/ds(-1/(s+1))

Thus, [tex]L^{-1}[/tex]{1/(s+1)²} = -t*[tex]e^{-t}[/tex]

To find the inverse Laplace transform of s²+4, we can use the table of Laplace transforms and the property of linearity of the Laplace transform:

L{[tex]t^{n}[/tex]} = n!/[tex]s^{(n+1)}[/tex]

L{4} = 4/[tex]s^{0}[/tex]

[tex]L^{-1}[/tex]{s² + 4} = L^-1{s²} + [tex]L^{-1}[/tex]{4} = 2*d²/dt²δ(t) + 4δ(t)

Now, we can use the convolution theorem to find the inverse Laplace transform of f(s):

[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} * [tex]L^{-1}[/tex]{s² + 4} = (-te^(-t)) * (2d²/dt²δ(t) + 4δ(t))

Simplifying this expression, we get:

[tex]L^{-1}[/tex]{f(s)} = -2[tex]te^{-t}[/tex]δ''(t) - 4[tex]te^{-t}[/tex]δ'(t) + 4[tex]e^{-t}[/tex]δ(t)

Therefore, the inverse Laplace transform of f(s) is:

f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t).

To learn more about convolution theorem  from the given link:

https://brainly.com/question/29673703

#SPJ1

An item is regularly priced at $55 . It is on sale for $40 off the regular price. What is the sale price?

Answers

Answer:22

Step-by-step explanation:

First you put

40/100

and that makes

11/22

HURRY UP Please answer this question

Answers

Answer:

[tex] {6}^{2} + {b}^{2} = {10}^{2} [/tex]

[tex]36 + {b}^{2} = 100[/tex]

[tex] {b}^{2} = 64[/tex]

[tex]b = 8[/tex]

Other Questions
Use a graphing calculator to approximate the zeros and vertex of the following quadratic functions. Y = x^2 - 5x + 2 Please provide Guidance ASAP on how to calculate the last question and answer this question.How many years will it take to reach 50,000 pairs and what unrealistic assumptions were made in prediting the time it would take to reach 50,000 pairs?Table 7. Analysis of Bald Eagle RecoveryWhat is the shape of the curve?J-shaped exponential curveDoubling time from 1,000 to 2,0004.73 yearsDoubling time from 2,000 to 4,0009.47 yearsDoubling time from 4,000 to 8,00018.94 yearsAverage doubling time11.05 yearsDoubling time increasing or decreasing?increasingStarting number of breeding pairs 791Year1974Theoretical prediction to reach 1,582 pairsYear1979Theoretical prediction to reach 3,164 pairsYear1987Theoretical prediction to reach 6,328 pairsYear2002Theoretical prediction to reach 12,636 pairsYear2030How many years to reach 50,000 pairs?235 years 1. Tom is gathering data on the music preferences of his classmates. He randomly surveyeda sample of the total student population. There are 1,200 total students on campus.TypePopRockR&BRapCountryElectronicaOtherTotalProportion:Number ofStudents30282224171118150a. Write and solve a proportion to find the approximate number of students on campuswho prefer R&B music.Proportion:Solution:b. Write and solve a proportion to find the approximate number of students on campuswho prefer Pop or Rock music.Solution:Apr 22dmentum Permission granted to copy for classroom use3:10 In a certain experiment, 0.969 mol sampe of Cu is allowed to react with 246mL of 6.60M HNO3 according to the following reaction: Cu(s) + HNO3(aq) -> Cu(NO3)2(aq) + H2O + NO(g)a) What is the limiting reactant?b) How many grams of H2O is formed?C) How many grams of the excess reactant remain after the limiting reactant is completely consumed? Is this a example of a v6 or a v8? Below is the graph of equation y= |x2|-1. Use this graph to find all values of x for the given values of y.y>0 A co-flowing (same direction) heat exchanger for cooling a hot hydrocarbon liquid at atmospheric pressure uses 10 kg/min of cooling water, which enters the heat exchanger at 25C. Five kg/min of the hot hydrocarbon, with an average specific heat of 2.5 kJ/kg K, enters at 300C and leaves at 150C. Is this possible? a fire hose can expel water at a rate of 9.5 kg/s ( 150 gallons/minute ) with a speed of 28 m/s .Part AHow much force must the firefighters exert on the hose in order to hold it steady?Express your answer to two significant figures and include appropriate units. 7. The human resources manager for a large company commissions a study in which the employment records of 500 company employees are examined for absenteeism during the past year. The business researcher conducting the study organizes the data into a frequency distribution to assist the human resources manager in analyzing the data. The frequency distribution is shown. For each class of the frequency distribution, determine the class midpoint, the relative frequency, and the cumulative frequency. Class Interval Frequency 0-under 2 218 2-under 4 207 4-under 6 56 6-under 8 11 8-under 10 8 Help select all question asap Is the function g(x)=(e^x)sinb an antiderivative of the function f(x)=(e^x)sinb 2Co + O2 = 2CO2In this reaction 10.8 mole of carbon dioxide was produced .calculate the number of moles of carbon monoxide used in this reaction to produce such number of moles of carbon dioxide According to the schedule, which book price is closest towhere supply meets demand?O $37$42O $39O $33Price ofa BookQuantitydemandedQuantitysuppliedSupply and Demand Schedule$45100480$40170410$35300330$30420240$25580180 what is the environmental scan for the maryland zoo?regulation and policies =social=economics=competition=technologicali have already done the SWOT analysis strenght, weakness, opportunity, and threats.we are doing a marketing research and i would appericiate if you could help me with the environmental scan . 3 bullet points for each what is plant biology definition Among the elements of the main group, the first ionization energy increasesfrom left to right across a period.from right to left across a period.when the atomic radius increases.down a group. A sample of gas occupies a volume of 450.0ml at 740 mmhg and 16C. determine the volume of this sample at 760mmhg and 35C Find the missing angles for angle 1 and angle 2 measurements round to the nearest 10th of a degree salesperson: bob, we would like to do business with you. how about giving us a chance to show what we can do for you? let's get your first order written up. this is an example of what type of close? ON YOUR OWN: Solve the following problems.1. How much heat must a 325 g sample of water absorb to raise its temperature from 15C to 70C?The specific heat of water is 4.184 J/gC.