In an axial flow compressor air enters the compressor at stagnation conditions of 1 bar and 290 K. Air enters with an absolute velocity of 145 m/s axially into the first stage of the compressor and axial velocity remains constant through the stage. The rotational speed is 5500 rpm and stagnation temperature rise is 22 K. The radius of rotor-blade has a hub to tip ratio of 0.5. The stage work done factor is 0.92, and the isentropic efficiency of the stage is 0.90. Assume for air Cp=1005 kJ/(kg·K) and γ= 1.4

Determine the followings. List your assumptions.

i. The tip radius and corresponding rotor angles at the tip, if the inlet Mach number for the relative velocity at the tip is limited to 0.96.
ii. The mass flow at compressor inlet.
iii. The stagnation pressure ratio of the stage and power required by the first stage.
iv. The rotor angles at the root section.

Answers

Answer 1

Answer:

i) r_t = 0.5101 m

ii) m' = 106.73 kg/s

iii) R_s = 1.26

P = 2359.8 kW

iv) β2 = 55.63°

Explanation:

We are given;

Stagnation pressure; T_01 = 290 K

Inlet velocity; C1 = 145 m/s

Cp for air = 1005 kJ/(kg·K)

Mach number; M = 0.96

Ratio of specific heats; γ = 1.4

Stagnation pressure; P_01 = 1 bar

rotational speed; N = 5500 rpm

Work done factor; τ = 0.92

Isentropic effjciency; η = 0.9

Stagnation temperature rise; ΔT_s = 22 K

i) Formula for Stagnation temperature is given as;

T_01 = T1 + C1/(2Cp)

Thus,making T1 the subject, we havw;

T1 = T_01 - C1/(2Cp)

Plugging in the relevant values, we have;

T1 = 290 - (145/(2 × 1005))

T1 = 289.93 K

Formula for the mach number relative to the tip is given by;

M = V1/√(γRT1)

Where V1 is relative velocity at the tip and R is a gas constant with a value of 287 J/Kg.K

Thus;

V1 = M√(γRT1)

V1 = 0.96√(1.4 × 287 × 289.93)

V1 = 0.96 × 341.312

V1 = 327.66 m/s

Now, tip speed is gotten from the velocity triangle in the image attached by the formula;

U_t = √(V1² - C1²)

U_t = √(327.66² - 145²)

U_t = √86336.0756

U_t = 293.83 m/s

Now relationship between tip speed and tip radius is given by;

U_t = (2πN/60)r_t

Where r_t is tip radius.

Thus;

r_t = (60 × U_t)/(2πN)

r_t = (60 × 293.83)/(2π × 5500)

r_t = 0.5101 m

ii) Now mean radius from derivations is; r_m = 1.5h

While relationship between mean radius and tip radius is;

r_m = r_t - h/2

Thus;

1.5h = 0.5101 - 0.5h

1.5h + 0.5h = 0.5101

2h = 0.5101

h = 0.5101/2

h = 0.2551

So, r_m = 1.5 × 0.2551

r_m = 0.3827 m

Formula for the area is;

A = 2πr_m × h

A = 2π × 0.3827 × 0.2551

A = 0.6134 m²

Isentropic relationship between pressure and temperature gives;

P1 = P_01(T1/T_01)^(γ/(γ - 1))

P1 = 1(289.93/290)^(1.4/(1.4 - 1))

P1 = 0.9992 bar = 0.9992 × 10^(5) N/m²

Formula for density is;

ρ1 = P1/(RT1)

ρ1 = 0.9992 × 10^(5)/(287 × 289.93)

ρ1 = 1.2 kg/m³

Mass flow rate at compressor inlet is;

m' = ρ1 × A × C1

m' = 1.2 × 0.6134 × 145

m' = 106.73 kg/s

iii) stagnation pressure ratio is given as;

R_s = (1 + ηΔT_s/T_01)^(γ/(γ - 1))

R_s = (1 + (0.9 × 22/290))^(1.4/(1.4 - 1))

R_s = 1.26

Work is;

W = C_p × ΔT_s

W = 1005 × 22

W = 22110 J/Kg

Power is;

P = W × m'

P = 22110 × 106.73

P = 2359800.3 W

P = 2359.8 kW

iv) We want to find the rotor angle.

now;

Tan β1 = U_t/C1

tan β1 = 293.83/145

tan β1 = 2.0264

β1 = tan^(-1) 2.0264

β1 = 63.73°

Formula for Stagnation pressure rise is given by;

ΔT_s = (τ•U_t•C1/C_p) × tan(β1 - β2)

Plugging in the relevant values;

22 = (0.92 × 293.83 × 145/1005) × (tan 63.73 - tan β2)

(tan 63.73 - tan β2) = 0.5641

2.0264 - 0.5641 = tan β2

tan β2 = 1.4623

β2 = tan^(-1) 1.4623

β2 = 55.63°

In An Axial Flow Compressor Air Enters The Compressor At Stagnation Conditions Of 1 Bar And 290 K. Air

Related Questions

Refrigerant-22 absorbs heat from a cooled space at 50°F as it flows through an evaporator of a refrigeration system. R-22 enters the evaporator at 10°F at a rate of 0.08 lbm/s with a quality of 0.3 and leaves as a saturated vapor at the same pressure. Determine:


a. The rate of cooling provided, in Btu/h.

b. The rate of exergy destruction in the evaporator.

c. The second-law efficiency of the evaporator.


Take T0 = 77°F. The properties of R-22 at the inlet and exit of the evaporator are: h1 = 107.5 Btu/lbm, s1 = 0.2851 Btu/lbm·R, h2 = 172.1 Btu/ lbm, s^2 = 0.4225 Btu/lbm·R.

Answers

Answer:

a) the  rate of cooling provided is 18604.8 Btu/h

b) the rate of exergy destruction in the evaporator is 0.46 Btu/Ibm

c) the second-law efficiency of the evaporator is 37.39%

Explanation:

Given that;

Temperature of sink TL = 50°F = 510 R

Temperature at evaporator inlet TI = 10°F = 470 R

mass flow rate m" = 0.08 lbm/s

quality of refrigerant at evaporator inlet x1 = 0.3

quality of refrigerant at evaporator exit x2 = 1.0

T₀ = 77°F = 537 R

h1 = 107.5 Btu/lbm

s1 = 0.2851 Btu/lbm·R,

h2 = 172.1 Btu/ lbm,

s2 = 0.4225 Btu/lbm·R.

a) rate of cooling provided, in Btu/h.

QL = m"( h2 - h1)

we substitute

QL = 0.08( 172.1 - 107.5

= 0.08 × 64.6

= 5.168 Btu/s

we convert to Btu/h

5.168 × 60 × 60

QL = 18604.8 Btu/h

Therefore the  rate of cooling provided is 18604.8 Btu/h

b) The rate of exergy destruction in the evaporator

Entropy generation can be expressed as;

S_gen = m"(s2 - s1) - QL/TL

so we substitute

S_gen = 0.08( 0.4225 -  0.2851  ) - 5.168 / 510

= 0.010992 - 0.01013

S_gen = 0.00086 Btu/ibm.R

now the energy destroyed expressed as;

X_dest = T₀ × S_gen

so

X_dest =  537 × 0.00086

X_dest = 0.46 Btu/Ibm

Therefore the rate of exergy destruction in the evaporator is 0.46 Btu/Ibm

c)  The second-law efficiency of the evaporator.

Energy expended is expressed as;

X_exp = m"(h1 - h2) - m"T₀(s1 - s2)

we substitute

= 0.08( 107.5 - 172.1 ) - [0.08 × 537 ( 0.2851 - 0.4225 )

= -5.168 - [ - 5.9027)

= -5.168 + 5.9027

= 0.7347 Btu/s

Now second law efficiency is expressed as;

nH = 1 - (X_dest / X_esp)

= 1 - ( 0.46 / 0.7347 )

= 1 - 0.6261

= 0.3739

nH = 37.39%

Therefore the second-law efficiency of the evaporator is 37.39%

What is computer programming

Answers

Answer:

Computer programming is where you learn and see how computers work. People do this for a living as a job, if you get really good at it you will soon be able to program/ create a computer.

Explanation:

Hope dis helps! :)

What is difference between a backdoor, a bot, a keylogger, and psyware,a nd a rootkit? Can they all present in the same malware?

Answers

Answer:

Yes, they can all be present in the same malware because each of them perform slightly differing functions.

Explanation:

Backdoor is a software which when placed into your computer will permit hackers to easily gain reentry into your computer. This can happen even after you have already patched the flaw that they have used to hack your system before.

A bot is a program that does the same task in a continuous manner akin to when you use a blender by pressing the button to blend what you have put into it.

A keylogger is a part of a hidden software that monitors and records everything you type on your computer keyboard after which it writes it onto a file, with the hopes of capturing relevant information such as your bank account number and even passwords and other sensitive means of identification.

A Spyware is somehow similar to a keylogger just that it steals information from your computer and sends it to someone else.

A root kit is a bad software that is capable of modifying the operating system or other privileged access devices in order to gain continuous access into your system for the purpose of gathering of information and/or reducing the system’s functionality.

Yes, they can all be present in the same malware because each of them perform slightly differing functions.

The structure of PF3(C6H5)2 is trigonal bipyramidal, with one equatorial and two axial F atoms which interchange positions when heated. Describe the low- and high- temperature 31P and 19F NMR spectra.

Answers

Answer:

For 31 P NMR spectra

low temperature

there is two types of 19f seen in low temperature and they are

one at equitorial one at axial

therefore in low temperature the 31p couples with the two types of 19F seen ( [tex]b_{f} and c_{f}[/tex]to form a triplet and this couples more with [tex]a_{f}[/tex] to form a doublet. i.e. one (1) peak

High temperature

At High temperature The exchange is fast here therefore the 31p spectra sees all 19p at once and in the same environment leading to the formation of one (1) peak

For 19 P NMR spectra

low temperature

In low temperature [tex]a_{f}, b_{f} , c_{f}[/tex] is fixed  and the environment where [tex]b_{f} and c _{f}[/tex] is the same hence a peak is formed and another peak is formed by [tex]a_{f}[/tex] that makes the number of peaks = 2 peaks

High temperature

In high temperature [tex]a_{f}, b_{f} , c_{f}[/tex]  exchange very fast therefore one peak is formed for all, since the fast exchanges makes NMR machine to take an average and produce just one peak for all

Explanation:

For 31 P NMR spectra

low temperature

there is two types of 19f seen in low temperature and they are

one at equitorial one at axial

therefore in low temperature the 31p couples with the two types of 19F seen ( [tex]b_{f} and c_{f}[/tex]to form a triplet and this couples more with [tex]a_{f}[/tex] to form a doublet. i.e. one (1) peak

High temperature

At High temperature The exchange is fast here therefore the 31p spectra sees all 19p at once and in the same environment leading to the formation of one (1) peak

For 19 P NMR spectra

low temperature

In low temperature [tex]a_{f}, b_{f} , c_{f}[/tex] is fixed  and the environment where [tex]b_{f} and c _{f}[/tex] is the same hence a peak is formed and another peak is formed by [tex]a_{f}[/tex] that makes the number of peaks = 2 peaks

High temperature

In high temperature [tex]a_{f}, b_{f} , c_{f}[/tex]  exchange very fast therefore one peak is formed for all, since the fast exchanges makes NMR machine to take an average and produce just one peak for all

7. The surface finish for the cylinder walls usually depends on the
O A. type of engine oil used.
O B. sharpness of the cylinder bore edges.
O C.type of piston rings used
O D. cylinder wall-to-piston clearance.

Answers

C- type of piston rings used

A system samples a sinusoid of frequency 230 Hz at a rate of 175 Hz and writes the sampled signal to its output without further modification. Determine the frequency that the sampling system will generate in its output.

a. 120
b. 55
c. 175
d. 230

Answers

B I got it right so (;

Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3
/s and at a
velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Figure.
Determine the force acting on the shaft (which is
also the force acting on the bearing of the shaft) in
the axial direction.

Answers

Answer:

Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.

Step-by-step solution:

Step 1 of 5

Given data:-

The velocity of water is .

The water flow rate is.

Which kind of fracture (ductile or brittle) is associated with each of the two crack propagation mechanisms?

Answers

dutile is the correct answer

Tubular centrifuge is used for recovering cells 60% of the cells or recover data flow rate of 12 l/min with a rotational speed of 4000 RPM what is the RPM to increase the recovery rate of the cells to 95% at the same flow rate

Answers

Answer:

The RPM to increase the recovery rate of the cells to 95% at the same flow rate is 6,333.3 RPM.

Explanation:

If the tubular centrifuge rotates at about 4,000 revolutions per minute to recover 60% of the cells, in case of wanting to recover 95% of the cells, the following calculation must be carried out to determine the required number of revolutions per minute:

60 = 4,000

95 = X

((95 x 4,000) / 60)) = X

(380,000 / 60) = X

6,333.3 = X

Therefore, as the calculation emerges, the tubular centrifuge will need to rotate at about 6,333.3 revolutions per minute to recover 95% of the cells in the same time.

I need help please thank for the help on the last one <3




Answers

Answer: D. Monocline (sorry if its wrong but from what i’ve learnt it is D)

Which method of freezing preserves the quality and taste of food?

Answers

Answer:

commercial freezing

Explanation:

smaller ice crystals are formed this causes less damage to cell membranes so the quality is less effected

A tube of diameter 3 cm and length 3 m has a water flow of 100 cm3/s. If the pollutant concentration in the water is constant at 2 mg/L, find the mass flux (mg/cm2-s) of pollutant through the tube due to advection.

Answers

Answer: the mass flux of pollutant through the tube due to advection is 0.0283 mg/cm².s

Explanation:

Given that;

Diameter of tube = 3 cm, radius r = 1.5 cm

water flow is 100 cm³/s

pollutant concentration = 2 mg/L

first we find the rate of flow of pollutant

we know that

1 L = 1000 cm³

xL = 100 cm³

100Lcm³ = xL1000cm³

xL = 100/1000

xL = 1/10 L

so 100cm³ = 1/10 L

now pollutant concentration in 100 cm³ = 1/10L × 2mg/L = 0.2 mg

Rate of flow of pollutant = 0.2 mg/s

Mass flux density is the pollutant mass per unit time per unit area

so Area of tube = πr² = 3.14 × 1.5² = 7.065 cm²

So

Mass flux = 0.2 / 7.065

Mass flux = 0.0283 mg/cm².s

Therefore, the mass flux of pollutant through the tube due to advection is 0.0283 mg/cm².s

What is the Bernoulli formula?

Answers

Answer:

P1+1/2pv2/1+pgh1=P2+1/2pv2/2+pgh2

A spring with an m-kg mass and a damping constant 3 (kg/s) can be held stretched 0.5 meters beyond its natural length by a force of 1.5 newtons. If the spring is stretched 1 meters beyond its natural length and then released with zero velocity, find the mass that would produce critical damping.

Answers

Answer:

0.75 kg

Explanation:

c = Damping coefficient = 3 kg/s

x = Displacement of spring = 0.5 m

F = Force = 1.5 N

From Hooke's law we get

[tex]F=kx\\\Rightarrow k=\dfrac{F}{x}\\\Rightarrow k=\dfrac{1.5}{0.5}\\\Rightarrow k=3\ \text{N/m}[/tex]

In the case of critical damping we have the relation

[tex]c^2-4mk=0\\\Rightarrow m=\dfrac{c^2}{4k}\\\Rightarrow m=\dfrac{3^2}{4\times 3}\\\Rightarrow m=0.75\ \text{kg}[/tex]

Mass that would produce critical damping is 0.75 kg.

0.75 kg is the mass that would produce critical damping. As spring with an m-kg mass and a damping constant 3 (kg/s) can be held stretched 0.5 meters beyond its natural length by a force of 1.5 newtons.

What is zero velocity?

A change in time and position is referred to as an object's velocity. When there is no movement of the object, the velocity of the object is said to be 0.

For any body in planar motion, the velocity is always instantaneously 0 at some point in the plane of motion (if it were rigidly connected to the body). This place is known as the instantaneous center of zero velocity, or IC.

Example: The gravitational pull of the earth pushes the ball away from the thrower when a ball is thrown upwards on Earth at a constant speed. The speed of the ball increases until it reaches its maximum, at which point it starts to plummet.

Thus, it is 0.75 kg.

For more information about zero velocity, click here:

https://brainly.com/question/18634403

#SPJ2

A smooth ceramic sphere (SG 5 2.6) is immersed in a fl ow of water at 208C and 25 cm/s. What is the sphere diameter if it is encountering (a) creeping motion, Red 5 1 or (b) transition to turbulence, Red 5 250,000

Answers

Answer:

a. 4[tex]\mu m[/tex]

b. 1 m

Explanation:

According to the question, the data is as follows

The Density of water at 20 degrees celcius is 1000 kg/m^3

Viscosity is 0.001kg/m/.s

Velocity V = 25 cm/s

V = 0.25 m/s

Now

a. The creeping motion is

As we know that

Reynold Number = (Density of water × V × d) ÷ (Viscosity)

1 = (1,000 × 0.25 × d) ÷ 0.0001

d = (1 × 0.001) ÷ (1,000 × 0.25)

= 4E - 06^m

= 4[tex]\mu m[/tex]

b. Now the sphere diameter is

Reynold Number = (Density of water × V × d) ÷ (Viscosity)

250,000 = (1,000 × 0.25 × d) ÷ 0.0001

d = (250,000 × 0.001) ÷ (1,000 × 0.25)

= 1 m

Instead of running blood through a single straight vessel for a distance of 2 mm, one mammalian species uses an array of 100 tiny parallel pipes of the same total cross-sectional area, 4.0 mm2. Volume flow is 1000 mm3/s. The pressure drop for fluid passing through the single pipe is lower than that through the 100 vessel array by a factor of:_______.
A. 10
B. 100
C. 1000

Answers

Solution:

Given that :

Volume flow is, [tex]$Q_1 = 1000 \ mm^3/s$[/tex]

So, [tex]$Q_2= \frac{1000}{100}=10 \ mm^3/s$[/tex]

Therefore, the equation of a single straight vessel is given by

[tex]$F_{f_1}=\frac{8flQ_1^2}{\pi^2gd_1^5}$[/tex]    ......................(i)

So there are 100 similar parallel pipes of the same cross section. Therefore, the equation for the area is

[tex]$\frac{\pi d_1^2}{4}=1000 \times\frac{\pi d_2^2}{4} $[/tex]

or [tex]$d_1=10 \ d_2$[/tex]

Now for parallel pipes

[tex]$H_{f_2}= (H_{f_2})_1= (H_{f_2})_2= .... = = (H_{f_2})_{10}=\frac{8flQ_2^2}{\pi^2 gd_2^5}$[/tex]  ...........(ii)

Solving the equations (i) and (ii),

[tex]$\frac{H_{f_1}}{H_{f_2}}=\frac{\frac{8flQ_1^2}{\pi^2 gd_1^5}}{\frac{8flQ_2^2}{\pi^2 gd_2^5}}$[/tex]

       [tex]$=\frac{Q_1^2}{Q_2^2}\times \frac{d_2^5}{d_1^5}$[/tex]

       [tex]$=\frac{(1000)^2}{(10)^2}\times \frac{d_2^5}{(10d_2)^5}$[/tex]

       [tex]$=\frac{10^6}{10^7}$[/tex]

Therefore,

[tex]$\frac{H_{f_1}}{H_{f_2}}=\frac{1}{10}$[/tex]

or [tex]$H_{f_2}=10 \ H_{f_1}$[/tex]

Thus the answer is option A). 10

Which of the following is not one of the common classifications of product liability defects? A. Manufacture B. Materials C. Packaging D. Both "Materials" and "Packaging" E. Design

Answers

Answer:

D. Both "Materials" and "Packaging"

Explanation:

Product liability may refer to the manufacturer or the seller being held responsible or liable for providing any defective product into the hands of the consumer or the customer. Responsibility or liability for a defective product which causes injuries lies with all the sellers of the product from the manufacturer to the distributor to the seller.

There are majorly three product defects. They are :

1. Manufacturing defect

2. Design defect

3. Marketing defect

The structure of a house is such that it loses heat at a rate of 3800 kJ/h per C di erence between the indoors and outdoors. A heat pump that requires a power input of 4 kW is used to maintain this house at 24C. Determine the lowest outdoor temperature for which the heat pump can meet the heating requirements of this house.

Answers

Answer:

-9.5° C

Explanation:

See attachment for calculations.

On the concluding parts, from the attachment, we have that

√[(297000 * 4)/(1056)] = 297 - T(l), and solving further, we get

297 - T(l) = √(1188000/1056)

297 - T(l) = √1125

297 - T(l) = 33.5

T(l) = 297 - 33.5

T(l) = 263.5

When you convert back to °C, we have

263.5 - 273 = -9.5° C

An unknown impedance Z is connected across a 380 V, 60 Hz source. This causes a current of 5A to flow and 1500 W is consumed. Determine the following: a. Real Power (kW) b. Reactive Power (kvar) c. Apparent Power (kVA) d. Power Factor e. The impedance Z in polar and rectangular form

Answers

Answer:

a) Real Power (kW) = 1.5 kW

b) Reactive Power (kvar) is 1.1663 KVAR

c) Apparent Power (kVA) is 1.9 KVA

d) the Power Factor cos∅ is 0.7894

e) the impedance Z in polar and rectangular form is 76 ∠ 37.87° Ω

Explanation:

Given that;

V = 380v

i = 5A

P = 1500 W

determine;

a) Real Power (kW)

P = 1500W = 1.5 kW

therefore Real Power (kW) = 1.5 kW

b) Reactive Power (kvar)

p = V×i×cos∅

cos∅ = p / Vi

cos∅ = 1500 / ( 380 × 5 ) = 0.7894

∅ = cos⁻¹ (0.7894)

∅ = 37.87°

Q = VIsin∅

Q = 380 × 5 × sin( 37.87° )

Q = 1.1663 KVAR

Therefore Reactive Power (kvar) is 1.1663 KVAR

c) Apparent Power (kVA)

S = P + jQ

= ( 1500 + J 1166.3 ) VA

S = 1900 ∠ 37.87° VA

S = 1.9 KVA

Therefore Apparent Power (kVA) is 1.9 KVA

d) Power Factor

p = V×i×cos∅

cos∅ = p / Vi

cos∅ = 1500 / ( 380 × 5 ) = 0.7894

Therefore the Power Factor cos∅ is 0.7894

e) The impedance Z in polar and rectangular form

Z = 380 / ( S∠-37.87) = V/I

Z = ( 60 + j 46.647) Ω

Z = 76 ∠ 37.87° Ω

Therefore the impedance Z in polar and rectangular form is 76 ∠ 37.87° Ω

An equal-tangent sag vertical curve is designed with a PVC as station 109+00 and elevation 950ft, the PVI has a station of 110+77 and elevation of 947.34ft, and the low point at station 110+50. Determine the design speed of the cure.

Answers

Answer:

K = 96 and the design speed of the curve = 50mph

Explanation:

109+00 = 10900

Elevation = 950ft

110+77 = 11077

Elevation = 947.34ft

Station of low point = 110+50 = 11050

To get grade of curve

Gi = 947.34-950/11077-10900

= -2.66/177

= -0.015x100

= -1.5%

Locate of low point (XL)

= 11050-10900

= 150

To get the value of K

XL = |GL| x K

When we substitute values

150 = 1.5 x K

150 = 1.5K

K = 150/1.5

K = 100

The suitable and most nearest value is K = 96

Then we use the standard chart to get the design speed for K = 96

On this chart, the design speed for the curve = 50mph

Therefore K = 96 and speed = 50mph

Which of the following is an example of a tax

Answers

Answer:

A tax is a monetary payment without the right to individual consideration, which a public law imposes on all taxable persons - including both natural and legal persons - in order to generate income. This means that taxes are public-law levies that everyone must pay to cover general financial needs who meet the criteria of tax liability, whereby the generation of income should at least be an auxiliary purpose. Taxes are usually the main source of income of a modern state. Due to the financial implications for all citizens and the complex tax legislation, taxes and other charges are an ongoing political and social issue.

I dont know I asked this to

Explanation:

A hair dryer is basically a duct in which a few layers of electric resistors are placed. A small fan pulls the air in and forces it to flow over the resistors, where it is heated. Air enters a 1400-W hair dryer at 100 kPa and 22°C and leaves at 47°C. The cross-sectional area of the hair dryer at the exit is 60 cm2. Neglect the power consumed by the fan and the heat losses through the walls of the hair dryer. The gas constant of air is R = 0.287 kPa·m3/kg·K. Also, cp = 1.007 kJ/kg·K for air at room temperature.

determine

(a) the volume flow rate of air at the inlet and

(b) the velocity of the air at the exit.

Answers

Answer:

a) volume flow rate of air at the inlet is 0.0471 m³/s

b) the velocity of the air at the exit is  8.517 m/s

Explanation:

Given that;

The electrical power Input W_elec = -1400 W = -1.4 kW

Inlet temperature of air T_in = 22°C

Inlet pressure of air p_in = 100 kPa

Exit temperature T_out = 47°C

Exit area of the dyer is A_out = 60 cm²= 0.006 m²

cp = 1.007 kJ/kg·K

R = 0.287 kPa·m3/kg·K

Using mass balance

m_in = m_out = m_air

W _elec = m_air ( h_in - h_out)

we know that h = CpT

so

W _elec = m_air.Cp ( T_in - T_out)

we substitute

-1.4 = m_air.1.007 ( 22 - 47 )

-1.4 =  - m_air.25.175

m_air = -1.4 / - 25.175

m_ air = 0.0556 kg/s

a) volume flow rate of air at the inlet

we know that

m_air = P_in × V_in

now from the ideal gas equation

P_in = p_in / RT_in

we substitute our values

= (100×10³) / ((0.287×10³)(22+273))

= 100000 / 84665

P_in = 1.18 kg/m³

therefore inlet volume flowrate will be;

V_in = m_air / P_in

= 0.0556 / 1.18

= 0.0471 m³/s

the volume flow rate of air at the inlet is 0.0471 m³/s

b) velocity of the air at the exit

the mass flow rate remains unchanged across the duct

m_ air = P_in.A_in.V_in = P_out.A_out.V_out

still from the ideal gas equation

P_out = p_out/ RT_out   ( assume p_in = p_out)

P_out = (100×10³) / ((0.287×10³)(47+273))

P_out  = 1.088 kg/m³

so the exit velocity will be;

V_out = m_air / P_out.A_out

we substitute our values

V_out = 0.0556 / ( 1.088 × 0.006)

= 0.0556 / 0.006528

= 8.517 m/s

 Therefore the velocity of the air at the exit is  8.517 m/s

The big ben clock tower in london has clocks on all four sides. If each clock has a minute hand that is 11.5 feed in length, how far does the tip of each hand travel in 52 minutes?

Answers

Answer:

Updated question

The big ben clock tower in London has clocks on all four sides. If each clock has a minute hand that is 11.5 feet in length, how far does the tip of each hand travel in 52 minutes?

The distance traveled by the tip of the minute hand of the clock would be 62.59 ft

Explanation:

Let us assume the shape of the clock is circular.

the minute hand is equal to the radius = 11.5 ft

Diameter = radius x 2

Diameter = 11.5 x 2 = 23 ft

The distance traveled by the tip of the minute hand can be calculated thus;

the fraction of the circumference traveled by the minute hand would be;

52/60 = 0.8667

Circumference of the clock would be;

C = pi x d

where C is the circumference

pi is a constant

d is the diameter

C = 3.14 x 23

C = 72.22 ft

Therefore the fraction of the circumference covered by the minute hand would be;

72.22 ft x 0.8667 = 62.59 ft

Therefore the distance traveled by the tip of the minute hand of the clock would be 62.59 ft

please help i have no xlue ​

Answers

Answer C. Surface waves and body waves.
Here a quote from Britannica to support this answer:
“Earthquakes generate two main types of seismic, or shock, waves: body waves and surface waves. “

A roadway is to be designed on a level terrain. The roadway id 500 ft. Five cross-sections have been selected at 0 ft, 125 ft, 250 ft, 375 ft, and 500 ft. the cross sections have areas of 130 ft^2, 140 ft^2, 60 ft^2, 110 ft^2, and 120 ft^2. What is the volume needed along this road assuming a 6% shrinkage?

Answers

Answer:

51112.5 ft^3

Explanation:

Determine the volume needed along the road when we assume a 6% shrinkage

shrinkage factor = 1 - shrinkage  = 1 - 0.06 =  0.94

first we have to calculate the volume between the cross sectional areas (i.e. A1 ---- A5 ) using average end area method

Volume between A1 - A2

= (125 ft - 0 ft) * [(130 ft^2 + 140 ft^2) / 2]

 = 125 ft * 135 ft^2

= 16875 ft^3

Volume between A2 - A3

= (250 ft - 125 ft) * [(140 ft^2 + 60 ft^2) / 2]

= 125 ft * (200 ft^2 / 2)

= 12500 ft^3

Volume between A3 - A4

= (375 ft - 250 ft) * [(60 ft^2 + 110 ft^2) / 2]

= 125 ft * (170 ft^2 / 2)

= 10625 ft^3

Volume between A4 - A5

(500 ft - 375 ft) * [(110 ft^2 + 120 ft^2) / 2]

 = 125 ft * 115 ft^2

= 14375 ft3

Hence the total volume along the 500 ft road

= ∑ volumes between cross sectional areas

=  16875 ft^3 + 12500 ft^3 + 10625 ft^3 + 14375 ft^3 = 54375 ft^3

Finally the volume needed along this road is calculated as

Total volume * shrinkage factor

= 54375 * 0.94  = 51112.5 ft^3

Consider the string length equal to 7. This string is distorted by a function f (x) = 2 sin(2x) - 10sin(10x). What is the wave formed in this string? a. In=12cos (nit ) sin(max) b. 2cos(2t)sin (2x) - 10cos(10t ) sin(10x) c. n 2 sin 2x e' – 10sin 10x e

Answers

Answer:

hello your question has a missing part below is the missing part

Consider the string length equal to [tex]\pi[/tex]

answer : 2cos(2t) sin(2x) - 10cos(10t)sin(10x)

Explanation:

Given string length = [tex]\pi[/tex]

distorted function f(x) = 2sin(2x) - 10sin(10x)

Determine the wave formed in the string

attached below is a detailed solution of the problem

Using the following data, determine the percentage retained, cumulative percentage retained, and percent passing for each sieve.
Sieve size Weight retained (g) No. 4 59.5 No. 8 86.5 No. 16 138.0 No. 30 127.8 No. 50 97.0 No. 100 66.8 Pan 6.3

Answers

Solution :

Sieve Size (in)                   Weight retain(g)

3                                         1.62

2                                         2.17

[tex]$1\frac{1}{2}$[/tex]                                       3.62

[tex]$\frac{3}{4}$[/tex]                                        2.27

[tex]$\frac{3}{8}$[/tex]                                        1.38

PAN                                    0.21

Given :

Sieve       weight       % wt. retain    % cumulative       % finer

size        retained                               wt. retain

No. 4        59.5            10.225%          10.225%            89.775%

No. 8        86.5            14.865%          25.090%           74.91%

No. 16       138              23.7154%        48.8054%         51.2%

No. 30      127.8           21.91%              70.7154%          29.2850%

No. 50      97               16.6695%         87.3849%         12.62%

No. 100     66.8            11.4796%         98.92%              1.08%

Pan            6.3               1.08%              100%                   0%

                581.9 gram

Effective size = percentage finer 10% ([tex]$$D_{20}[/tex])

0.149 mm, N 100, % finer 1.08

0.297, N 50 , % finer 12.62%

x  ,   10%

[tex]$y-1.08 = \frac{12.62 - 1.08}{0.297 - 0.149}(x-0.149)$[/tex]

[tex]$(10-1.08) \times \frac{0.297 - 0.149}{12.62 - 1.08}+ 0.149=x$[/tex]

x = 0.2634 mm

Effective size, [tex]$D_{10} = 0.2643 \ mm$[/tex]

Now, N 16 (1.19 mm)  ,  51.2%

N 8 (2.38 mm)  ,  74.91%

x,  60%

[tex]$60-51.2 = \frac{74.91-51.2}{2.38-1.19}(x-1.19)$[/tex]

x = 1.6317 mm

[tex]$\therefore D_{60} = 1.6317 \ mm$[/tex]

Uniformity co-efficient = [tex]$\frac{D_{60}}{D_{10}}$[/tex]

   [tex]$Cu= \frac{1.6317}{0.2643}$[/tex]

Cu = 6.17

Now, fineness modulus = [tex]$\frac{\Sigma \text{\ cumulative retain on all sieve }}{100}$[/tex]

[tex]$=\frac{\Sigma (10.225+25.09+48.8054+70.7165+87.39+98.92+100)}{100}$[/tex]

= 4.41

which lies between No. 4  and No. 5 sieve [4.76 to 4.00]

So, fineness modulus = 4.38 mm

If you make a mistake in polarity when measuring the value of DC voltage in a circuit with a digital VOM, what will happen? A. The meter will be damaged. B. The meter will read positive voltage only. C. The meter will display a negative sign. D. The meter will display OL which states an overload condition.

Answers

Answer:

C. The meter will display a negative sign.

Explanation:

If you use an analog voltmeter and you measure voltage with reverse polarity you will damage it. But in this case we are using a digital multimeter. This kind of multimeter is designed to be able to deal with positive and negative voltages

I need help with simply science ​

Answers

Answer:

mountain ranges may be

A person holds her hand out of an open car window while the car drives through still air at 65 mph. Under standard atmospheric conditions, what is the maximum pressure on her hand? What would be the maximum pressure if the "car" were an Indy 500 racer traveling 200 mph?

Answers

Answer:

[tex]10.8\ \text{lb/ft^2}[/tex]

[tex]101.96\ \text{lb/ft}^2[/tex]

Explanation:

[tex]v_1[/tex] = Velocity of car = 65 mph = [tex]65\times \dfrac{5280}{3600}=95.33\ \text{ft/s}[/tex]

[tex]\rho[/tex] = Density of air = [tex]0.00237\ \text{slug/ft}^3[/tex]

[tex]v_2=0[/tex]

[tex]P_1=0[/tex]

[tex]h_1=h_2[/tex]

From Bernoulli's law we have

[tex]P_1+\dfrac{1}{2}\rho v_1^2+h_1=P_2+\dfrac{1}{2}\rho v_2^2+h_2\\\Rightarrow P_2=\dfrac{1}{2}\rho v_1^2\\\Rightarrow P_2=\dfrac{1}{2}\times 0.00237\times 95.33^2\\\Rightarrow P_2=10.8\ \text{lb/ft^2}[/tex]

The maximum pressure on the girl's hand is [tex]10.8\ \text{lb/ft^2}[/tex]

Now [tex]v_1[/tex] = 200 mph = [tex]200\times \dfrac{5280}{3600}=293.33\ \text{ft/s}[/tex]

[tex]P_2=\dfrac{1}{2}\rho v_1^2\\\Rightarrow P_2=\dfrac{1}{2}\times 0.00237\times 293.33^2\\\Rightarrow P_2=101.96\ \text{lb/ft}^2[/tex]

The maximum pressure on the girl's hand is [tex]101.96\ \text{lb/ft}^2[/tex]

Other Questions
Which of the following statements correctly describes a difference between plant cells and animal cells?2 pointsA. Plant cells have an envelope surrounding the nucleus. Animal cells do not.B. Animal cells contain mitochondria. Plant cells do not.C. Animal cells contain chloroplasts. Plant cells do not.D. Plant cells are surrounded by a cell wall. Animal cells are not. Complete the equation that represents the total value of the nickels and p pennies Cada semana de los ltimos 3 aos Luca ha hecho 120 km en bicicleta y cada mes 100 km corriendo y 15 km nadando. Debe cambiar la bicicleta cada 20.000 km. Tiene que cambiarla ya? Translate in the afternoono la tardede la tardeo de la nocheen tarde Explain How are speed and pressure of a fluid related? Which city on the map is located at about 40 N, 75 W?please help! 2. Suppose you and your friend want to exchange lecture notes taken during class. She has an iPhone and you have an iPad. What is the easiest way to do the exchange?a. Cope the files to an SD card and move the SD card to each device.b. Drop the files in OneDrive and share notebooks with each other.c. Send a text to each other with the files attached.d. Transfer the files through an AirDrop connection. Your uncle repays a $300 loan from Tenth National Bank (TNB) by writing a $300 check from his TNB checking account. Assume these funds are theonly loans and deposits available for your uncle and the bank. List three logical reasons that someone might avoid consuming alcohol (even if they are of legal age) how long will it take 13,000 to grow to 18,000 if the investment earns at the interest rate of 3% compunded monthly 2) What is 75% of $20.00? *A. 1,500B. $15.00C. $0.15D. $150.00 Water vapor particles are most likely to phase change into liquid particles If the vapor particles come into contact with:a cold surfaceOno surfacea warm surfaceO any surface at all - the temperature of the surface does not matter Who is the Governor of Washington D.C.? Why might this be important? If you know then help me with this one :) Company X has 100 shares outstanding. It earns $1,000 per year and announces that it will use all $1,000 to repurchase its shares in the open market instead of paying dividends. Calculate the number of shares outstanding at the end of year 1, after the first share repurchase, if the required rate of return is 10 percent.a) 110.0b) 100.0c) 90.91d) 89.0 find the missing side lengths. leave ur answers as radicals HELP PLEASE!! MATH! USA TEST PREP HELP!!! What types of elements- metals,nonmetals, or metalloids requirethe most energy to remove anelectron?Why do these elements have a higher ionization energy? do you think the mass of the products after the chemical reaction would be greater than, less than, or the same as the mass of the reactants before the chemical reaction? HELPPPPP PLEASEEEEE!!!!!!!!!