Is 91.470 rational or irrational?

Answers

Answer 1

The number 91.470 is the rational number.

What is termed as the rational number?Rational numbers are written in the form p/q, in which p and q are any integer and q 0 respectively. The following are the various types of rational numbers.Integers such as -2, 0, 3, and so on are rational numbers.Rational numbers are fractions with integer numerators and denominators, such as 3/7, -6/5, and so on.Ending decimals such as 0.35, 0.7116, 0.9768, and so on are rational numbers.Rational numbers are non-terminating decimals with repeating patterns (just after decimal point), including such 0.333..., 0.141414..., and so on. These are commonly referred to as non-terminating recurring decimals.

For the given number.

91.470 can be written in the fraction as;

91470/1000

Or 914/100

As, the form is p/q where q ≠ 0.

Thus, the number 91.470 is the rational number.

To know more about the rational number, here

https://brainly.com/question/13895659

#SPJ13


Related Questions

Use the rules of significant figures to answer the following question:43.5694 * 22.07A. 961.58B. 961C. 961.577D. 961.7

Answers

we have that

43.5694 * 22.07=961.576658

therefore

the answer is

961.577 -----> 6 figures

(remember that 43.5694 has 6 figures)

option C

help pleaseeeeeeeeeeeeeeee

Answers

Answer:

(b) f(2) = 28

(c) f(-2) = -20

Step-by-step explanation:

f(2) = -2^3 + 7 x 2^2 - 2 x 2 + 12           f(-2) = -2^3 + 7 x -2^2 - 2 x -2 + 12


1. Calculate Exponents


-2^3 = -8                                               -2^3 = -8

2^2 = 4                                                  -2^2 = -4

-8 + 7 x 4 - 2 x 2 + 12                           -8 + 7 x -4 - 2 x -2 + 12


2.  Multiply (left to right)


7 x 4 = 28                                               7 x -4 = -28

2 x 2 = 4                                                 2 x -2 = -4

-8 + 28 - 4 + 12                                    -8 - 28 - (-4) + 12


3. Add (left to right)


-8 + 28 = 20                                           -8 + -28 = -36

20 - 4 = 16                                              -36 - (-4)= -32

16 + 12 = 28                                            -32 + 12 = -20

What is the area of the triangle 9 2 12

Answers

The given diagram is a traingle with base 12 units, height 4 units, and one side 9 units.

Since base (b) and height (h) are known, we can use the following formula for the area (A) of the triangle,

[tex]A=\frac{1}{2}bh[/tex]

Substitute the values and simplify the expression,

[tex]\begin{gathered} A=\frac{1}{2}\times12\times4 \\ A=6\times4 \\ A=24 \end{gathered}[/tex]

Thus, the area of the given triangle is 24 square units.

Solve-2x-16=2x-20.
Ox=1
O no solutions
○ * = −1
all real numbers

Answers

x = 1


First, move the terms.
-2x - 2x = -2 + 20

Collect like terms
-4x = -20 + 16 —> -4x = -4


Divide both sides
x = 1

A
piece of ribbon
was cut into
three parts in the ratio of 1:3'5
If the shortest was 11cm how long was the ribbon

Answers

1:3:5
11:33:55=99
99cm

Answer: Total Length of ribbon is 99 cm

Step-by-step explanation:

Here ribbon was cut into three parts in the ratio 1:3:5

let x be the common multiple of the above ratio

therefore, the lengths of the three parts of the ribbon is 1x,3x,5x

now, given is that the shortest part i.e 1x is equals to 11cm

i.e   1x=11

        x=[tex]\frac{11}{1}[/tex]=11cm

     now lengths of the ribbon will be

      1x=11cm, 3x=3*11=33cm, 5x=5*11=55cm

 now total length of piece of ribbon = 1x+3x+5x=9x=9*11=99cm

         

A local video game store sells used games and new games. A new game costs$64, including tax. A used game costs $43, including tax. Luis bought 3 more used games than new games. Luis spent $343. How many used games did Luis purchase?

Answers

Given:

new game cost - $ 64

used game cost - $ 43

Luis spent $ 343

Required:

Number of used games Luis purchased

Solution

Let: x be the number of new games Luis bought

x + 3 be the number of used games Luis bought

Total cost = $ 343

Total Cost = (No. of new games bought)(Cost of new games) + (No. of used games bought)(Cost of used games)

$ 343 = ( x ) ( $ 64 ) + ( x + 3 ) ( $ 43 )

343 = 64x + 43 ( x + 3 )

343 = 64x + 43x + 129

343 - 129 = 107x

214 = 107x

2 = x

x = 2

x be the number of new games Luis bought 2

x + 3 be the number of used games Luis bought 2 + 3 = 5

Answer:

Luis purchased 5 used games

To check:

Substitute x into the equation,

343 = x ( 64 ) + (x + 3 ) (43)

343 = 2 ( 64 ) + (2 + 3)(43)

343 = 2 (64) + (5) (43)

343 = 128 + 215

343 = 343

The computed value of x satisfies the equation, Our answer is correct.

For people over 50 years old, the level of glucose in the blood (following a 12 hour fast) is approximately normally distributed with mean 85 mg/dl and standard deviation 25 mg/dl ("Diagnostic Tests with Nursing Applications", S. Loeb). A test result of less than 40 mg/dl is an indication of severe excess insulin, and medication is usually prescribed.

What is the probability that a randomly-selected person will find an indication of severe excess insulin?

Suppose that a doctor uses the average of two tests taken a week apart (assume the readings are independent). What is the probabiltiy that the person will find an indication of severe excess insulin?

Repeat for 3 tests taken a week apart:

Repeat for 5 tests taken a week apart:

Answers

Using the normal distribution and the central limit theorem, it is found that:

There is a 0.0359 = 3.59% probability that a randomly-selected person will find an indication of severe excess insulin.Considering the mean of two tests, there is a 0.0054 = 0.54% probability that the person will find an indication of severe excess insulin.Three tests: 0.0009 = 0.09%.Five tests: 0% probability.

Normal Probability Distribution

The z-score of a measure X of a normally distributed variable that has mean represented by [tex]\mu[/tex] and standard deviation represented by [tex]\sigma[/tex] is given by the following rule:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The z-score measures how many standard deviations the measure X is above or below the mean, depending if the z-score score is positive or negative.From the z-score table, the p-value associated with the z-score is found, which represents the percentile of the measure X in the distribution of interest.By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

The mean and the standard deviation of the glucose levels are given, respectively, by:

[tex]\mu = 85, \sigma = 25[/tex]

The probability of a reading of less than 40 mg/dl(severe excess insulin) is the p-value of Z when X = 40, hence:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

Z = (40 - 85)/25

Z = -1.8.

Z = -1.8 has a p-value of 0.0359.

For the mean of two tests, the standard error is:

s = 25/sqrt(2) = 17.68.

Hence, by the Central Limit Theorem:

[tex]Z = \frac{X - \mu}{s}[/tex]

Z = (40 - 85)/17.68

Z = -2.55.

Z = -2.55 has a p-value of 0.0054.

For 3 tests, we have that:

s = 25/sqrt(3) = 14.43.

Z = (40 - 85)/14.43

Z = -3.12.

Z = -3.12 has a p-value of 0.0009.

For 5 tests, we have that:

s = 25/sqrt(5) = 11.18.

Z = (40 - 85)/11.18

Z = -4.03

Z = -4.03 has a p-value of 0.

More can be learned about the normal distribution at https://brainly.com/question/4079902

#SPJ1

Which of the following expressions is equal to -x2 -36
OA. (-x+6)(x-6i)
OB. (x+6)(x-6i)
OC. (-x-6)(x-6i)
OD. (-x-6)(x+6i)

Answers

The expression equivalent to  -x² - 36 is the one in option C.

(-x - 6i)*(x - 6i)

Which of the following expressions is equal to -x² - 36?

We can rewrite the given expression as:

-x² - 36 = -x² - 6²

And remember that the product of a complex number z = (a + bi) and its conjugate (a - bi) is:

(a + bi)*(a - bi) = a² + b²

Then in this case we can rewrite:

-x² - 6² = -(x² + 6²) = - (x + 6i)*(x - 6i)

                             = (-x - 6i)*(x - 6i)

The correct option is C.

Learn more about complex numbers at:

https://brainly.com/question/10662770

#SPJ1

Simplify completely.a.4x212 xwhen x +0.b. (2t)(3t)(t)c. (3x² - 4x +8)+(x² +6x-11)d. (3x² + 4x – 8) - (x² + 6x +11)

Answers

The expression in 4a) is given below

[tex]\frac{4x^2}{12x}[/tex]

Collecting similar terms using the division rule of indices, we will have

[tex]\frac{a^m}{a^n}=a^{m-n}[/tex]

The above expression therefore becomes

[tex]\begin{gathered} \frac{4x^2}{12x} \\ =\frac{4x^2}{12x^1} \\ =\frac{1}{3}\times x^{2-1} \\ =\frac{1}{3}\times x \\ =\frac{x}{3} \end{gathered}[/tex]

Hence,

The final answer = x/3

What is the probability of drawing a red card from a pack of cards and rolling an even number on a standard six-sided die?

Select one:

1/12

1/2

1/4

1/8

Answers

Answer:

1/2 because half the cards are red and half the numbers are even

4. Sean bought 1.8 pounds of gummy bears and 0.6 pounds of jelly beans and paid $10.26. He went back to the store the following week and bought 1.2 pounds of gummy bears and 1.5 pounds of jelly beans and paid $15.09. What is the price per pound of each type of candy?Directions: For each problem - define your variables, set up a system of equations, and solve.

Answers

Let

the price of gummy bears per pound = x

the price of jelly beans per pound = y

[tex]\begin{gathered} 1.8x+0.6y=10.26 \\ 1.2x+1.5y=15.09 \\ 1.2x=15.09-1.5y \\ x=12.575-1.25y \\ \\ 1.8(12.575-1.25y)+0.6y=10.26 \\ 22.635-2.25y+0.6y=10.26 \\ -1.65y=10.26-22.635 \\ -1.65y=-12.375 \\ y=\frac{-12.375}{-1.65} \\ y=7.5 \\ \\ 1.8x+0.6y=10.26 \\ 1.8x+0.6(7.5)=10.26 \\ 1.8x+4.5=10.26 \\ 1.8x=10.26-4.5 \\ 1.8x=5.76 \\ x=\frac{5.76}{1.8} \\ x=3.2 \end{gathered}[/tex]

price per pound of gummy bear = $3.2

price per pound of jelly beans = $7.5

Solve the system [tex]\left \{ {{5x1 + 5x2 = 5} \atop {2x1 + 3x2 = 4}} \right.[/tex]

Answers

The solution for the given system of equations is x[1] = -1 and x[2] = 2.

What is system of equations?

A system of linear equations (or linear system) is a collection of one or more linear equations involving the same variables.

Given are the following equations as -

5 x[1] + 5 x[2] = 5

2 x[1] + 3 x[2] = 4

Assume that -

x[1] = a    

x[2] = b

Then, we can write the equations as -

5a + 5b = 5

2a + 3b = 4

Now -

5a + 5b = 5

5(a + b) = 5

a + b = 1

a = 1 - b

So, we can write -

2a + 3b = 4

as

2(1 - b) + 3b =4

2 - 2b + 3b = 4

b = 4 - 2

b = 2 = x[2]

Then

a = 1 - 2

a = -1 = x[1]

Therefore, the solution for the given system of equations is x[1] = -1 and x[2] = 2.

To solve more questions on system of equations , visit the link below-

https://brainly.com/question/27911202

#SPJ1

Andre was trying to write 7^4/7^-3 with a single exponent and write 7^4/7^-3= 7^4-3=7^1 Exploit to Andre what his mistake was and what the answer should be...PLEASE THE ANSWER IS URGENT!!

Answers

[tex]\frac{7^4}{7^{-3}}=7^7[/tex]

Here, we want to get what Andre's mistake was and correct it

To answer this, we are supposed to use the division law of indices

We have this as;

[tex]\frac{a^x}{a^y\text{ }}=a^{x-y}[/tex]

Now, in the case of this question, x is 4 and y is -3

So, we have the expression as;

[tex]7^{4-(-3)}=7^{4+3}=7^7[/tex]

His mistake is thus adding the exponents instead of subtracting

Solve for a.5a== ✓ [?]2aPythagorean Theorem: a2 + b2 = c2=

Answers

ANSWER

a = √21

EXPLANATION

This is a right triangle, so we have to apply the Pythagorean Theorem to find the value of a.

We know the length of the hypotenuse which is 5, and the length of one of the legs, which is 2. The Pythagorean Theorem for this problem is,

[tex]a^2+2^2=5^2[/tex]

Subtract 2² from both sides,

[tex]\begin{gathered} a^2+2^2-2^2=5^2-2^2 \\ a^2=25-4 \end{gathered}[/tex]

And take the square root to both sides,

[tex]\begin{gathered} \sqrt[]{a^2}=\sqrt[]{25-4} \\ a=\sqrt[]{21} \end{gathered}[/tex]

Hence, the value of a is √21.

Write the equation of a Circle with the given information.End points of a diameter : (11, 2) and (-7,-4)

Answers

The form of the equation of the circle is

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Where (h, k) are the coordinates of the center

r is the radius

Since the endpoints of the diameter are (11, 2) and (-7, -4), then

The center of the circle is the midpoint of the diameter

[tex]\begin{gathered} M=(\frac{11+(-7)}{2},\frac{2+(-4)}{2}) \\ M=(\frac{4}{2},\frac{-2}{2}) \\ M=(2,-1) \end{gathered}[/tex]

The center of the circle is (2, -1), then

h = 2 and k = -1

Now we need to find the length of the radius, then

We will use the rule of the distance between the center (2, -1) and one of the endpoints of the diameter we will take (11, 2)

[tex]\begin{gathered} r=\sqrt[]{(11-2)^2+(2--1)^2} \\ r=\sqrt[]{9^2+3}^2 \\ r=\sqrt[]{81+9} \\ r=\sqrt[]{90} \\ r^2=90 \end{gathered}[/tex]

Now substitute them in the rule above

[tex]undefined[/tex]

I really need help please!

Answers

Answer:

  n < -15/4

Step-by-step explanation:

You want to use the discriminant to find the values of n for which the quadratic 3z² -9z = (n -3) has only complex solutions.

Discriminant

The discriminant of quadratic equation ax²+bx+c = 0 is ...

  d = b² -4ac

The given quadratic can be put in this form by subtracting (n-3):

  3z² -9z -(n -3) = 0

This gives us ...

a = 3b = -9c = -(n -3)

and the discriminant is ...

  d = (-9)² -4(3)(-(n-3)) = 81 +12(n -3)

  d = 12n +45

Complex solutions

The equation will have only complex solutions when the discriminant is negative:

  d < 0

  12n +45 < 0 . . . . . use the value of the discriminant

  n +45/12 < 0 . . . . . divide by 12

  n < -15/4 . . . . . . . subtract 15/4

There will be two complex solutions when n < -15/4.

Hi, can you help me answer this question please, thank you!

Answers

Given:

The test claims that night students' mean GPA is significantly different from the mean GPA of day students.

Null hypothesis: the population parameter is equal to a hypothesized value.

Alternative hypothesis: it is the claim about the population that is contradictory to the null hypothesis.

For the given situation,

[tex]\begin{gathered} \mu_N_{}=\text{ Night students} \\ \mu_D=Day\text{ students} \end{gathered}[/tex]

Null and alternative hypothesis is,

[tex]\begin{gathered} H_0\colon\mu_N=\mu_D \\ H_1\colon\mu_N_{}\ne\mu_D \end{gathered}[/tex]

Answer: option f)

The sum of the squares of three consecutive odd numbers is 83. Find the numbers.

Answers

In order to represent three consecutive odd numbers, we can use the expressions "x", "x+2" and "x+4".

If we add the square of each number, the result is 83, so we can write the following inequality:

[tex]\begin{gathered} x^2+(x+2)^2+(x+4)^2=83\\ \\ x^2+x^2+4x+4+x^2+8x+16=83\\ \\ 3x^2+12x+20=83\\ \\ 3x^2+12-63=0\\ \\ x^2+4x-21=0 \end{gathered}[/tex]

Let's solve this quadratic equation using the quadratic formula, with a = 1, b = 4 and c = -21:

[tex]\begin{gathered} x=\frac{-b\pm\sqrt{b^2-4a}c}{2a}\\ \\ x=\frac{-4\pm\sqrt{16+84}}{2}\\ \\ x=\frac{-4\pm10}{2}\\ \\ x_1=\frac{-4+10}{2}=\frac{6}{2}=3\\ \\ x_2=\frac{-4-10}{2}=\frac{-14}{2}=-7 \end{gathered}[/tex]

If we assume the numbers are positive, the numbers are 3, 5 and 7.

(The other result, with negative numbers, would be -7, -5 and -3).

what is the area of a circular pool with a diameter of 36 ft?

Answers

Answer:

1,017.36ft^2

Explanation:

Area of the circular pool = \pi r^2

r is the radius of the pool

Given

r = d/2

r = 36/2

r = 18ft

Area of the circular pool = 3.14(18)^2

Area of the circular pool = 3.14 * 324

Area of the circular pool = 1,017.36ft^2

A parents' evening was planned to start at
15h45. There were 20 consecutive
appointments of 10 minutes each and a
break of 15 minutes during the evening. At
what time was the parents evening due to
finish?
C O 19h15
O 19h20
O 19h00
O 20h00
O 19h30

Answers

The time on which parents evening was due to finish was 19 hour 20 minutes.

What is time and its unit?

Time is the ongoing pattern of existence and things that happen in what seems to be an irreversible order from the past, through the present, and into the future.

It is a component quantity of various measurements used to order events, compare the length of events or the time gaps between them, and quantify rates of change of quantities in objective reality or in conscious experience. Along with the three spatial dimensions, time is frequently considered a fourth dimension.

The International System of Units is built upon the seven base units of measurement stipulated by the Système International d'Unités (SI), from which all other SI units are derived. The primary unit of time is the second. The second can be shortened using either the letter S or the letter sec.

20 consecutive appointments of 10 mins = 20 × 10 mins

                                                                     = 200 min

                                                                      = 3 hours 20 mins

A break of 15 mins = 3 hours 20 mins + 15 min

                               = 3 hours 35 mins

The time that the parents evening due to finish = 15h 45 min +3h 35 mins

                                                                               = 19h 20min

Thus, the time on which parents evening was due to finish was 19h 20min.

Learn more about time

https://brainly.com/question/24662469


#SPJ9

URGENT!! ILL GIVE
BRAINLIEST!!!!! AND 100
POINTS!!!!!

If angle a measures 42 degrees, then what other angles would be congruent to angle a and also measure 42 degrees?

Answers

If angle "a" measures 42° the the other angles that will be congruent to angle "a" and also measure 42° will be angle d, angle e and angle h .

In the question ,

a figure is given ,

From the figure we can see that 2 parallel lines are cut by a transversal .

So ,

angle a = angle d   .......because vertically opposite angles .

angle a = angle e   ...because corresponding angles are equal in measure

also

angle e = angle h      .... because vertically opposite angles .

Therefore , If angle "a" measures 42° the the other angles that will be congruent to angle "a" and also measure 42° will be angle d, angle e and angle h , the correct option is (a) .

Learn more about Angles here

https://brainly.com/question/1597341

#SPJ1

15 Which of the digits from 2 to 9 is 5544
divisible by?

Answers

Answer:

All of em, except 5

Step-by-step explanation:

5544 / 2 = 2772

5544 / 3 = 1848

5544 / 4 = 1386

5544 / 6 = 924

5544 / 7 = 792

5544 / 8 = 693

5544 / 9 = 616

What point in the feasible region maximizes the objective function?
x>0
Y≥0
Constraints
-x+3≥y
{ y ≤ ½ x + 1
objective function: C = 5x - 4y

Answers

Answer:

(3, 0)

Maximum Value of Objective Function = 15

Step-by-step explanation:

This is a problem related to Linear Programming(LP)

In linear programming, the objective is to maximize or minimize an objective function subject to a set of constraints.

For example, you may wish to maximize your profits from a mix of production of two or more products subject to resource constraints.

Or, you may wish to minimize cost of production of those products subject to resource constraints..

The given LP problem can be stated in standard form as

Max 5x - 4y

s.t.

-x + 3 ≥ y    

y ≤ 0.5x  + 1  

x ≥ 0, y ≥ 0

The last two constraints always apply to LP problems which means the decision variables x and y cannot be negative

It is standard to express these constraints with the decision variables on the LHS and the constant on the RHS

Rewriting the above LP problem using standard notation,

Let's rewrite the constraints using the standard form:
- x + 3 ≥ y  
→  -x - y ≥ -3  
→ x + y ≤ 3   [1]


y ≤ 0.5x + 1

→ -0.5x + y ≤ 1  [2]

The LP problem becomes
        Max 5x - 4y

s. t.

        x + y ≤ 3            [1]
        -0.5x + y ≤ 1      [2]
        x ≥ 0                 [3]
        y ≥0                  [4]

With an LP problem of more than 2 variables, we can use a process known as the Simplex Method to solve the problem

In the case of 2 variables, it is possible to solve analytically or graphically. The graphical process is more understandable so I will use the graphical method to arrive at the solution

The feasible region is the region that satisfies all four constraints shown.

The graph with the four constraint line equations is attached. The feasible region is the dark shaded area ABCD

The feasible region has 4 corner points(A, B,C, D) whose coordinates can be computed by converting each of the inequalities to equalities and solving for each pair of equations.

It can be proved mathematically that the maximum of the objective function occurs at one of the corner points.

Looking at [1] and [2] we get the equalities
     x + y = 3        [3]
-0.5x + y = 1        [4]

Solving this pair of equations gives x = 4/3 and y = 5/3 or (4/3, 5/3)

Solving y = 0 and x + y = 3 gives point x = 3, y =0  (3,0)

The other points are solved similarly, I will leave it up to you to solve them


The four corner  points are
A(0,0)
B(0,1)
C(4/3, 5/3)
D(3,0)

The objective function is 5x - 4y

To find the values of x and y that maximize the objective function,

plug in each of the x, y values of the corner points

Ignoring A(0,0)

we get the values of the objective function at the corner points as

For B(0,1) => 5(0) - 4(1) = -4

For C(4/3, 5/3) => 5(4/3) - 4(5/3) = 20/3 - 20/3 = 0

For D(3, 0) => 5(3) - 4(0) = 15

So the values of x and y which maximize the objective function are x = 3 and y = 0 or point D(3,0)

Find all the values of x where the tangent line is horizontal.3f(x) = x³ - 4x² - 7x + 12X=(Use a comma to separate answers as needed. Type an exact answer, using radicals

Answers

Given the function:

[tex]h(x)=x^3-4x^2-7x+12[/tex]

Find the first derivative:

[tex]h^{\prime}(x)=3x^2-8x-7[/tex]

The first derivative gives us the slope of the tangent line to the graph of the function. When the tangent line is horizontal, the slope is 0, thus:

[tex]3x^2-8x-7=0[/tex]

This is a quadratic equation with coefficients a = 3, b = -8, c = -7.

To calculate the solutions to the equation, we use the quadratic solver formula:

[tex]$$x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}$$ [/tex]

Substituting:

[tex]x=\frac{-(-8)\pm\sqrt{(-8)^2-4(3)(-7)}}{2(3)}[/tex]

Operate:

[tex]\begin{gathered} x=\frac{8\pm\sqrt{64+84}}{6} \\ \\ x=\frac{8\pm\sqrt{148}}{6} \end{gathered}[/tex]

Since:

[tex]148=2^2\cdot37[/tex]

We have:

[tex]\begin{gathered} x=\frac{8\pm2\sqrt{37}}{6} \\ \\ \text{ Simplifying by 2:} \\ \\ x=\frac{4\pm\sqrt{37}}{3} \end{gathered}[/tex]

There are two solutions:

[tex]\begin{gathered} x_1=\frac{4+\sqrt{37}}{3} \\ \\ x_2=\frac{4-\sqrt{37}}{3} \end{gathered}[/tex]

7Lines a and bare parallel cut by transversal line t solve for the value of x25x + 4a3x + 14

Answers

These angles measure the same they are interior alternate angles.

3x + 14 = 5x + 4

Solve for x

3x - 5x = 4 - 14

Simplify like terms

-2x = -10

x = -10/-2

Result

x = 5

A student rolled 2 dice. What is the probability that the first die landed
on a number less than 3 and the second die landed on a number
greater than 3?

Answers

So what’s the probability you ask?
So the first dice can get either 1 or 2 and the second dice can have 4 5 or 6
So we need any one of these outcomes
(1,4) (1,5) (1,6) (2,5) (2,6) (2,4)
Clearly total no of outcomes is 36 (6x6)
Thus probability= 6/36 = 1/6

The wholesale price for a chair is 194$ . A certain furniture store marks up the wholesale price by 35%. Find the price of the chair in the furniture store.

Answers

The price of the chair will be 261.9 $ .

One percent (symbolized 1%) is a hundredth part; thus, 100 percent represents the entirety and 200 percent specifies twice the given quantity. For example, 1 percent of 1,000 chickens equals 1/100 of 1,000, or 10 chickens; 20 percent of the quantity is 20/100 1,000, or 200.

If we say, 5%, then it is equal to 5/100 = 0.05.

To solve percent problems, you can use the equation, Percent · Base = Amount, and solve for the unknown numbers. Or, you can set up the proportion, Percent = , where the percent is a ratio of a number to 100. You can then use cross multiplication to solve the proportion.

Based on given conditions formulate

x = 194 ×(35%+1)

x= 194 ×1.35

x = 261.9 $ .

Thus The price of the chair will be 261.9 $ .

To know more about percentage.

visit-: https://brainly.com/question/28269290

#SPJ1

Two cars start moving from the same point. One travels south at 24 mi/h and the other travels west at 18 mi/h. At what rate (in mi/h) is the distance between the cars increasing four hours later?
mi/h

Answers

The rate at which the distance between the two cars increased four hours later is 30 mi/h.

How to determine the rate?

First of all, we would determine the distances travelled by each of the cars. The distance travelled by the first car after four (4) hours is given by:

Distance, x = speed/time

Distance, x = 24/4

Distance, x = 6 miles.

For the second car, we have:

Distance, y = speed/time

Distance, y = 18/4

Distance, y = 4.5 miles.

After four (4) hours, the total distance travelled by the two (2) cars is given by this mathematical expression (Pythagorean theorem):

z² = x² + y²

Substituting the parameters into the mathematical expression, we have;

z² = 6² + 4.5²

z² = 36 + 20.25

z² = 56.25

z = 7.5 miles.

Next, we would differentiate both sides of the mathematical expression (Pythagorean theorem) with respect to time, we have:

2z(dz/dt) = 2x(dx/dt) + 2y(dy/dt)

Therefore, the rate of change of speed (dz/dt) between the two (2) cars is given by:

dz/dt = [x(dx/dt) + y(dy/dt)]/z

dz/dt = [6(24) + 4.5(18)]/7.5

dz/dt = [144 + 81]/7.5

dz/dt = 225/7.5

dz/dt = 30 mi/h.

Read more about distance and rates here: https://brainly.com/question/15563113

#SPJ1

Answer:

30 mi / hr

Step-by-step explanation:

First find out how far the cars are apart after 4 hours

24 * 4 = 96 mi = y

18 * 4 = 72 mi = x

Now use the pythagorean theorem

   s^2 =  ( x^2 + y^2 )                shows s = 120 miles apart at 4 hours

Now s^2 = x^2 + y^2     Differentiate with respect to time ( d  / dt )

       2 s ds/dt    =  2x dx/ dt  + 2y dy / dt

             ds/dt    =   (x dx/dt + y dy/dt)/s

                           =  (72(18)  + 96(24)) / 120

               ds/dt   = 30 mi/hr

What needs to occur for a geometric series to converge?

Answers

Given a Geometric Series:

[tex]\sum_{n\mathop{=}1}^{\infty}a\cdot r^{n-1}[/tex]

Where "r" is the ratio.

By definition:

[tex]undefined[/tex]

20 >= 4/5 w
Solve the inequality. Grab the solution


Solve the inequality. Grab the solution

-8<-1/4m

Answers

In inequality 20 >= 4/5 w, w is 25 or any real no. lower than< 25 and in inequality -8<-1/4m, m = any real no. greater than> 24 is are the solution.

What is inequality?

An inequality compares two values and indicates whether one is lower, higher, or simply not equal to the other.

A B declares that a B is not equal.

When a and b are equal, an is less than b.

If a > b, then an is bigger than b.

(those two are called strict inequality)

The phrase "a b" denotes that an is less than or equal to b.

The phrase "a > b" denotes that an is greater than or equal to b.

We have give the inequality to solve

20 = 4/5w

w = 20 × 5/4

   = 25 or any real no. lower than< 25

Let -8 = -1/4m

m = -8 × -4

m = 24

so m = any real no. greater than> 24

Learn more about inequality

https://brainly.com/question/24372553

#SPJ13

Other Questions
I want to know more about the history of the war what is (x squared -4x+3)-(3x squared -3x -5) Please help will give brainiest!!!Which of the following scenarios would be an example of situational irony? A. Jane enjoyed writing and filled up three full notebooks with stories from her summer vacation. B. Tom's mom made chocolate chip cookies for him on his birthday. C. The hero of the story falls in love with the evil villain. 6. There are 45 cans of mixed nuts. Eachcan has 338 nuts. Below is Mary's workto find the total number of nuts. Evaluate the correlation shown in this scatter plot and then answer the 2 questions below.How would you describe the direction and strength of this scatter plot? Is it positive or negative? Is it weak, moderately strong, or perfect? (worth 1.5 points)How did you decide what words to choose to describe this correlation? (worth 1.5 points) 30 POINTS FORR WHO AWNSERS Skills Find the new bank account balance Old balance: $500.00Withdrawal: $175.00Withdrawal: $60.00Deposit: $37.50 Phones are an essential mode of communication in todays world. People use phones to communicate with their family members, colleagues, to call for help, and to educate others. Phones have transmitters and receivers within them because they both transmit and receive information. During this process, radio waves from a phone are transmitted to a cell tower. The tower receives the information and then transmits it to the phone of the person it is intended for. Remote areas often have poor cell phone reception because they do not have many cell towers nearby. Describe one way to solve this problem. Write (2p^2)^3 without exponents.(2p^2)^3 = ?? In New York the mean salary for high school teachers in 2017 was 97010 with a standard deviation of 9540. Only Alaskas mean salary was higher. Assume new Yorks state salaries follow a normal distribution. (A) what percent of new Yorks high school teachers earn between 83,000 and 88,000? (B) what percent of New York teachers earn between 88,000 and 103,000? (C) what percent of new Yorks state high school teachers earn less than 73,000? In "The Dangers of Tradition," Bakari Bosa argues, "Perhaps it is up to each person to question the traditions they follow and determine whether they do more harm than good." Explain how the text "The Lottery" by Shirley Jackson challenges this statement.Please write in the format above and one quote needs to be from the Lottery and the other from the Dangers of Tradition Your hotel has been reviewed on yelp 10 times you received the following ratings 4,5,5,3,5,4,2,3 what is your overall rating In 1992, a postage stamp cost $0.25. In 2004, a postage stamp cost $0.37. What is the average rate of change in postage cents per year? Please help I was sick today and I dont understand Find the equation of the line that passes through (-3,1) and is parallel toy=43x. Leave your answer in the formy=mx+c What is d to the power of 6 and d to the power of 0 equal together? If you wanted to take a simple random sample for a study on screen time in elementary school students in your town, which describes the sample you would ask?twenty students from one elementary class in your towntwenty students from each elementary school in your towntwenty students that are friends from an elementary school in your towntwenty students that are friends from each elementary school in your town What decision support strategy uses a technique based on a non-linear predictive model that creates a hidden-layer analysis of input information that is defined using training and observed behaviors?. 946.353 round off to the 2nd decimal point Given m||n, find the value of x.Answer:kt49OxSubmit Answer Greta hears her father speaking to his secretary. She is disappointed because he is leaving town once again. He tells the secretary to prepare some papers because the directions are coming down about the Jewish Problem. He has heard that the Fuhrer has outlined a plan, and it is up to people like himself to carry it through. Gretas heart sinks because her father prepares to leave first thing in the morning. Where is Gretas father likely headed when dawn arrives? Steam Workshop Downloader