The compounded loan means that in the first year the 10.2% of interest is add to the initial 54200 and that value generate the next year the 10.2%
then in the first year the interest will be:
You use a rule of three:
[tex]\text{1st}=\frac{54200\cdot10.2}{100}=5528.4[/tex]As the first year the interest is 5528.4
To the second year that sum is added to the 54200 to get the interest:
[tex]54200+5528.4=59728.4[/tex][tex]2nd=\frac{59728.4\cdot10.2}{100}=6092.3[/tex]Third year:
[tex]59728.4+6092.3=60820.7[/tex][tex]3rd=\frac{60820.7\cdot10.2}{100}=6203.7[/tex]Fourth year:
[tex]60820.7+6203.7=67024.4[/tex][tex]4th=\frac{67024.4\cdot10.2}{100}=6836.5[/tex]After 4 years:
[tex]67024.4+6836.5=73860.9[/tex][tex]=\frac{73860.9\cdot10.2}{100}=7533.8[/tex]After 4 years the interest will be: 7533.8y=tan(x/8) Find the period, x intercepts, and vertical asymptotes
Given:
[tex]y=\tan(\frac{x}{8})[/tex]Find-: Period, x-intercepts, and vertical asymptotes.
Sol:
Graph of function is:
The period of the function is:
[tex]\text{ Period}=8\pi[/tex]The x-intercept of function is:
For the x-intercept value of "y" is zero so,
[tex]\begin{gathered} y=\tan(\frac{x}{8}) \\ \\ \tan(\frac{x}{8})=0 \\ \\ \frac{x}{8}=\tan^{-1}(0) \\ \\ x=8\tan^{-1}(0) \\ \\ x=-8\pi,0,8\pi,16\pi...... \end{gathered}[/tex]Vertical asymptotes are:
For the function can't find vertical asymptotes.
(d) Find the domain of function R. Choose the correct domain below.
Answer:
Answer:
d
Step-by-step explanation:
The number of years must be non-negative.
This eliminates all of the options except for d.
A company claims that each bag of pretzels weighs 11.3 oz. A sample of 37 bags was weighed. The mean weight of these bags was 11.05 oz, with a standard deviation of 1.35 oz Test the hypothesis at a 5% level of significance.A. Reject the null hypothesis. There is enough evidence to oppose the company's claim.B. Fail to reject the null hypothesis. There is enough evidence to oppose the company's claim.C. Fail to reject the null hypothesis. There is not enough evidence to oppose the company's claim.D. Reject the null hypothesis. There is not enough evidence to oppose the company's claim.
Solution
[tex]\begin{gathered} H_0\colon\mu=11.03 \\ \\ H_1\colon\mu=11.05 \\ \\ z=\frac{11.03-11.05}{1.35} \\ \\ Z_{\text{score}}=0.98803>0.05 \end{gathered}[/tex]C. Fail to reject the null hypothesis. There is not enough evidence to oppose the company's claim.
does the mean of a data set have to be one of the data values?
No, the mean of a data set doesn't have to be one of the data values of the data set.
What is mean of a data set?The mean equals the total of all the values in the data set divided by the number of values in the data set. It is the most commonly used value. However, you will note that the mean is not always one of the actual values in your data set. An important aspect of the mean is that it incorporates every value in your data set as part of the computation. Furthermore, the mean is the only measure of central tendency in which the sum of the deviations from the mean is always zero.To know more about mean visit:
https://brainly.com/question/11163338
#SPJ13
The function f(x)= -200x+1000 represents the altitude (in feet) of a paraglider x minutes from the time the paraglider begins a descent to a landing site located 100 feet above sea level. Identify the slope, domain, and range.
The slope of the Function is -200, the domain of the function is any real value of x and the range of the function is [1000,∞).
The provided function is,
f(x) = -200x+1000
This function is representing the altitude of a paraglider and time from where the paraglider descent. Here, x is representing time in minutes.
The landing site is located at the depth of 1000 feet.
we can write the function as,
y = -200x + 1000
Here, y is the range of the function.
As we observes the function, it is an equation of line,
So, the slope is equal to the coefficient of x.
So the slope is -200.
The domain is any value of x for which the function is defined,
as this it an equation of line,
The domain would be any real value of x.
The range is the output that we get after putting value of x.
Here,
Put x = 0.
y = -200(0)+1000
y = 1000
Now. putting x = -1,
y = -200(-1) + 1000
y = 1200.
Putting any negative value of x will make y positive,
So, the range will be [1000,∞)
To know more about domain and range, visit,
https://brainly.com/question/26098895
#SPJ1
If g(x) = 5(x²+1) + 16, what is the value of g(11) ?
Answer:
626
Step-by-step explanation:
11^2= 121
121+1=122
122x5=610
610+16=626
hope this helped
an item is regularly priced at $33. it is now priced at a discount of 85% off the regular price
Answer: The item should now cost $4.95 if that is the question
Step-by-step explanation:
15% of 33 is 4.95 giving you the answer of 4.95 hope this helps
if x is the number of years since 2000 and y is the percent of people using travel services the following equations represent the percent of people using travel agents and the percent of people using the internet to plan travel. y=-2x+30 y=6x+41 Find the year travel agents and the Internet were used equally
We need to solve a system of two variables with two equations, using elimination method.
y=-2x+30 (1)
y=6x+41 (2)
We are going to multiply first equation by 3, doing so the equation (1) can be written as:
3y = -6x + 90 (1)
Then, we are going to add the last equation to the second equation
3y = -6x + 90 (1)
+ y= 6x + 41 (2)
-----------------------------
4y = 131
y = 131 / 4 Isolating y
y= 131/ 4
Then, we replace y= 131/4 in the first equation and solve for x
[tex]\begin{gathered} \frac{131}{4}=-2x+30 \\ \frac{131}{4}-30=-2x\text{ Transposing 30 to the other side of the equation} \\ \frac{131}{4}-\frac{120}{4}=-2x\text{ Converting 30 to an improper fraction} \\ \frac{11}{4}=-2x\text{ Operating homogeneous fractions} \\ \frac{\frac{11}{4}}{-2}=-\frac{2}{-2}x\text{ Dividing by -2 on both sides of the equation} \\ -\frac{11}{8}=x \end{gathered}[/tex]Since -11/8 is equal to -1.4 and x represents the number of years since 2000, then the year travel agents and the Internet were used equally was 1998.
3.1 x 10^3 in scientific notation
Answer:3100
Step-by-step explanation:
If 3.1 x 10^3 is because you count the first number and then you use what is less in the power like you have 3 and u used 1 for the number 1 so you left with 2 those 2 will be zeros 3100.
I hope this helped pls put it as brainliest
Answer: 3.1 × 103
Step-by-step explanation:
Joan attended school for 2 weeks longer than 3/4 of the year. How long did Joan attend school? (Assume 52 weeks in a year.)
The duration Joan attended school is 41 weeks.
How to find how long she attend school?Joan attended school for 2 weeks longer than 3/4 of the year.
The time she attended school can be calculated as follows:
52 weeks = 1 year
3 / 4 of 52 = 156 / 4
3 / 4 of 52 = 39 weeks
Therefore, 3 / 4 of a year is 39 weeks.
She attended school 2 weeks longer than 3 /4 of the year(39 weeks).
Hence,
the duration she attended school = 39 + 2
the duration she attended school = 41 weeks
learn more on weeks and year here: https://brainly.com/question/10778902
#SPJ1
can you pleasee help meeeeeeeeee
Answer:
55.17
Step-by-step explanation:
[tex]P(0)=0.023(0)^3-0.289(0)^2+3.068(0)+55.170=55.17[/tex]
Select the correct answer.
What is the sum of this expression?
Answer:
l think its B
Step-by-step explanation:
f(x) = 4x3 + 5x2 – 3x - 6g(x) = 4x - 5Find (f - 3)(x).O A. (f - g)(x) = 4x3 + 5x2 – 7x – 1O B. (f - g)(x) = 4x3 + 5.02 +0 - 1O c. (f - g)(x) = 4x3 + 5x2 – 7x – 11O D. (f - g)(x) = 4x3 + 5x2 + x - 11SUBMIT
Please help (There are two parts to this question you have to graph and then find the slope)
From the given graph,
The line representing the rise and the line representing the run on the given graph can be seen below
To find the slope, m, of a straight line, the formula is
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]Taking points from the graph
If you had half a dollar, three quarters, eight dimes, six nickels, and nine pennies, how much money would you have altogether?
If we have half a dollar, three quarters, eight dimes, six nickels, and nine pennies , then we altogether have $2.44 .
In the question ,
it is given that
we have half a dollar ,
which means half a dollar = $0.50
we have , three quarters means
we have 75 cents
and 75 cents = $0.75
we have 8 dimes ,
we know that 1 dime [tex]=[/tex] 10 cents
so , 8 dimes = 80 cents
and 80 cents = $0.80
we have six nickels,
we know that 20 nickels = $1
so , 1 nickel = $1/20
and 6 nickel = $ 6/20 = $0.30
we have nine pennies ,
we know that 100 pennies = $1
So ,1 Pennie = $1/100
and 9 pennies = $ 9/100 = $0.09
Combining all together we get
total money = half a dollar + three quarters + 8 dimes + six nickels + nine pennies .
Substituting the values , we get
total money = $0.50 + $0.75 + $0.80 + $0.30 + $0.09
= $2.44
Therefore , if we have half a dollar, three quarters, eight dimes, six nickels, and nine pennies , then we altogether have $2.44 .
Learn more about Conversion here
https://brainly.com/question/6318224
#SPJ1
On a map, a museum is located at (15, 17). A library is located at (15, -2). How many units away museum from the libraryA. 2 unitsB. 13 unitsC. 17 unitsD. 19 units
Let's look at the locations of the library and museum in a coordinate plane:
The museum is "17" units above the x-axis.
The library is "2" units below the x-axis.
The total units between the museum and library is 17 + 2 = 19 units
Thus, the distance between the museum and library is 19 units.
Correct Answer:
D
During second period, Anita completed a grammar worksheet. Of the 18 questions, Anita got 50% right. How many questions did Anita get right?
Answer:
Anita answered nine questions correctly.
Step-by-step explanation:
50% is 1/2 and 1/2 of 18 is 9.
Sorry for bad English, love from Vanuatu!
Which equation below would produce thefollowing graph?A) f(2)=-(2+4)(3-1)(-5)B) f(z) = (2+4)(z-1)(-5)C) f(3) = (2-4)(2+1)(2+5)D) f(3) = -(2-4)(2+1)(2+5)
If we take the first option of the question, we have the following zeros or points passing through the x-axis:
[tex]f(x)=-(x+4)\cdot(x-1)\cdot(x-5)=0[/tex][tex]x+4=0,x-1=0,x-5=0[/tex]We then have:
[tex]x=-4,x=1,x=5[/tex]These points coincide with the ones in the graph.
The expansion of this equation is:
[tex]f(x)=-x^3+2x^2+19x-20_{}[/tex]If we give some points to the equation at points x = -6, x = -3, x = 0, x = 3, x = 6, we have:
f(-6) = 154
f(-3) = -32
f(0) = -20
f(3) = 28
f(6) = -50
And all these values adjust to the proposed graph.
Therefore, the equation for option A would produce the proposed graph.
This is a way to solve this question. We can also make use of the derivatives of the first or of the second-order to find if this equation produces this graph.
Indicate whether the following statements are True (T) or False (F). 1. The product of two real numbers is always a real number. 2. The quotient of two real numbers is always a real number (provided the denominator is non-zero). 3. The ratio of two real numbers is never zero. 4. The difference of two real numbers is always a real number. 5. The sum of two real numbers is always a real number. 6. The quotient of two real numbers is always a rational number (provided the denominator is non-zero). 7. The difference of two real numbers is always an irrational number.
The required answer is true, false, true, false, true, true, and false for statements 1, 2, 3, 4, 5, 6, and 7 respectively.
The product of two real numbers is always a real number is true.
The quotient of two real numbers is always a real number (provided the denominator is non-zero) is false because when you divide, you get the quotient, and when you divide, you might get decimals.
The ratio of two real numbers is never zero is true.
The difference of two real numbers is always a real number is false because it could be a decimal.
The sum of two real numbers is always a real number is true.
The quotient of two real numbers is always a rational number (provided the denominator is non-zero) is true.
The difference of two real numbers is always an irrational number is false.
Therefore, the required answer is true, false, true, false, true, true, and false for statements 1, 2, 3, 4, 5, 6, and 7 respectively.
Learn more about the number system here:
https://brainly.com/question/21751836
#SPJ1
Danielle owes $13.80 for text messaging in the month of March. If her text messaging plan costs $9 forthe first 550 messages and 20¢ for each additional text message, how many text messages did shesend that month?AnswerKeypadKeyboard Shortcutstext messages
Given
Danielle owes $13.80 for text messaging in the month of March.
If her text messaging plan costs $9 for the first 550 messages and 20¢ for each additional text message.
To find the number of text messages did she send that month.
Now,
Let x be the number of text messages she send that month.
Then, from the given data,
[tex]x=550+\frac{13.8-9}{0.20}[/tex]Since 20cents is $0.20.
Then,
[tex]\begin{gathered} x=550+\frac{13.8-9}{20}\times100 \\ =550+\frac{4.8\times100}{20} \\ =550+4.8\times5 \\ =550+24 \\ =574 \end{gathered}[/tex]Hence, the number of text messages send by her is 574.
Solve the system algebraically. Make sure that any points you name satisfy both equations.
Write out the two equations given
[tex]\begin{gathered} y=-x^2+5=====(\text{equation 1)} \\ -x+y=3======(\text{equation 2)} \end{gathered}[/tex]Make y the subject of equation 2
[tex]\begin{gathered} -x+y=3 \\ y=3+x====(\text{equation 3)} \end{gathered}[/tex]Since y is equal to y, then equations 1 and 3 are equal
[tex]\begin{gathered} y=-x^2+5 \\ y=3+x \\ y=y \\ -x^2+5=3+x \\ x^2+x+3-5=0 \\ x^2+x-2=0 \end{gathered}[/tex][tex]\begin{gathered} x^2-x+2x-2=0 \\ x(x-1)+2(x-1)=0 \\ (x-1)(x+2)=0 \\ x-1=0,x=1 \\ \text{or} \\ x+2=0,x=-2 \end{gathered}[/tex]Substitute x into equation 3
[tex]\begin{gathered} y=3+x \\ \text{when x=1} \\ y=3+1=4(1,4) \\ \text{when x=-2} \\ y=3+(-2) \\ y=3-2=1(-2,1) \end{gathered}[/tex]Hence, the coordinates of the solution are (1,4) (-2,1)
pair of shoes $80 find the total paid if taxes 6%
The first step is to find the value of the tax, you do it by multiplying the price of the shoes by the tax (in decimal form), this way:
[tex]t=80\cdot0.06=4.8[/tex]Now, add this value to the price of the shoes:
[tex]80.00+4.8=84.80[/tex]The total paid is $84.80.
I need some help finding slope from an equation-4y = 12+2x
Given the equation:
[tex]-4y=12+2x[/tex]To find the slope of the equation, solve the equation for (y)
It is required to make the equation like the slope-intercept form
[tex]y=mx+b[/tex]So, for the given equation, divide all terms by (-4)
So,
[tex]\begin{gathered} \frac{-4y}{-4}=\frac{12}{-4}+\frac{2x}{-4} \\ \\ y=-3-\frac{1}{2}x \\ \\ y=-\frac{1}{2}x-3 \end{gathered}[/tex]compare the last result with the slope-intercept form
So, the slope = m = -1/2
So, the answer will be:
[tex]\text{slope}=-\frac{1}{2}[/tex]please help me (question “e”)
Answer:
42 - 6 ÷ (6 - 3) = 40
Step-by-step explanation:
BODMAS
The BODMAS rule is an acronym representing the order of operations in math:
BracketsOrders (Powers and Square Roots, etc.)Division and Multiplication (from left to right)Addition and Subtraction (from left to right)Given calculation:
42 - 6 ÷ 6 - 3 = 40
Following the order of operations, where division comes before subtraction, the current calculation is:
⇒ 42 - 6 ÷ 6 - 3
⇒ 42 - 1 - 3
⇒ 41 - 3
⇒ 38
Therefore, brackets should be added around (6 - 3) to make the calculation correct:
⇒ 42 - 6 ÷ (6 - 3)
⇒ 42 - 6 ÷ 3
⇒ 42 - 2
⇒ 40
Suppose that the function f is defined, for all real numbers, as follows.1--x' +4 if x13f(x) = 24if x=1Find f(-4).f(1), and f(3).1(-4) = 0음f(1) = 0X Х?f(3) =
Answer:
[tex]\begin{gathered} f(-4)=-\frac{4}{3} \\ f(1)=4 \\ f(3)=1 \end{gathered}[/tex]Step-by-step explanation:
These types of functions are called Piecewise-defined functions since it use a different formula for different parts of its domain because it has a point of discontinuity.
We have the following function:
[tex]f(x)=\begin{cases}-\frac{1}{3}x^2+4\rightarrow ifx\ne1^{} \\ \text{ 4 if x=1}\end{cases}[/tex]So, to find f(-4), we need to substitute x=-4 into the function for x≠1.
[tex]\begin{gathered} f(-4)=\frac{-1}{3}(-4)^2+4 \\ f(-4)=-\frac{1}{3}(16)+4 \\ f(-4)=-\frac{16}{3}+4 \\ f(-4)=-\frac{4}{3} \end{gathered}[/tex]Now, for f(1) we know that the outcome is 4.
[tex]f(1)=4[/tex]Then, for f(3), substitute x=3 into the function for x≠1.
[tex]\begin{gathered} f(3)=-\frac{1}{3}(3)^2+4 \\ f(3)=-\frac{1}{3}(9)+4 \\ f(3)=1 \end{gathered}[/tex]Identify the variables, coefficients, and constants of the following equations.
3x = 12
y = 1/2x - 6
Answer:
Variables are the letters that represent a number. So, it would be the ones bolded here: 3x=12 and y=1/2x-6
The coefficients are next to the variables-the ones being multiplied with the variable. They are bolded here: 3x= 12 and y= 1/2x-6
The constants are the numbers that aren't coefficients or variables. So they are bolded here: 3x=12 and y=1/2x-6
Ahmad spends $16 each time he travels the toll roads. He started the month with $224 in his toll road account. The amount, A (in dollars), that he has left in the account after t trips on the toll roads is given by the following function.
A (t) = 224 - 16t
Answer the following questions.
a. How much money does Ahmad have left in the account after 11 trips on the toll roads?
b. How many trips on the toll roads can he take until his account is empty?
Part a
[tex]A(11)=224-16(11)=\boxed{\$48}[/tex]
Part b
[tex]A(t)=0\\\\224-16t=0\\\\t=\frac{224}{16}\\\\t=\boxed{14 \text{ trips}}[/tex]
a) The amount of money does Ahmad have left in the account after 11 trips on the toll roads is $ 48
b) The number of trips on the toll roads can he take until his account is empty is 14 trips
What is an Equation?Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the equation be represented as A
Now , the value of A is
Substituting the values in the equation , we get
A ( t ) = 224 - 16t , where t is the number of trips
a)
The amount of money does Ahmad have left in the account after 11 trips on the toll roads be P
Substituting the value of t = 11 in the equation , we get
A ( 11 ) = 224 - 16 ( 11 )
A ( 11 ) = 224 - 176
A ( 11 ) = $ 48
So , The amount of money does Ahmad have left in the account after 11 trips on the toll roads is $ 48
b)
The number of trips on the toll roads can he take until his account is empty be n
when A ( t ) = 0
224 - 16t = 0
Adding 16t on both sides of the equation , we get
224 = 16t
Divide by 16 on both sides , we get
t = 14 trips
Hence , the equations are solved
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ2
Find the area using A = 1 * W. Mr. Janacek's class is doing an art projec with different-colored squares. How many 1-inch squares can be cut from an 18-inch by 24-inch piece of construction paper?
We have the following:
The area is
[tex]A=L\cdot W[/tex]L (long) is 24 inch and W (wide) is 18 inch, replacing:
[tex]\begin{gathered} A=24\cdot18 \\ A=432 \end{gathered}[/tex]The area is 432 squares inch, therefore:
[tex]\frac{432}{1}=432[/tex]Therefore a total of 432 1-inch squares can be cut
for any numbers x,y [x=0 in(4) and y = 0 in (5)] and any positive integers m,n, the following holds:x^m · x^n=x^m+nProve number 1
Proved
Explanation:
To prove x^m · x^n=x^m+n, let's assign numbers to x, m and n
let x = 2
m = 3, n = 4
x^m · x^n = 2^3 . 2^4
x^m+n = 2^(3+4)
Solve each of the above seperately and comparew the answer:
[tex]\begin{gathered} x^m\times x^n=2^3\times2^4 \\ =\text{ (2}\times2\times2)\times(2\times2\times2\times2) \\ =\text{ 8}\times16 \\ =\text{ }128 \end{gathered}[/tex][tex]\begin{gathered} x^{m+n}=2^{3+4} \\ =2^7\text{ = 2}\times2\times2\times2\times2\times2\times2 \\ =\text{ 128} \end{gathered}[/tex][tex]\begin{gathered} sincex^m\times x^n\text{ = 128} \\ \text{and x}^{m+n}\text{ = 128} \\ \text{Therefore, }x^m\times x^n\text{ = x}^{m+n} \end{gathered}[/tex]This expression x^m · x^n=x^m+n has been proved to be equal
A family has 5 children. Assume that each child is as likely to be a boy as it is to be a girl. Find the probability that the family has 5 girls if it is known that the family's first child is a girl.
The required probability is 1/31 that the family has 5 girls if it is known that the family's first child is a girl.
What is probability?Probability is defined as the possibility of an event being equal to the ratio of the number of favorable outcomes and the total number of outcomes.
Let us express every possible set of 5 children as a 5-letter word made up of the letters G or B. (G for a girl and B for a boy).
In all, 2⁵ = 32 such words are outcomes, with two options for each of the five slots.
The constraint "if it is known that the family contains at least one female" suggests that we would evaluate the reduced space of all such words, except the word (BBBBB).
This reduced event space is made up of 32-1 = 31 elements.
There is just one such term in the favorable collection of events (GGGGG).
As a result, the probability for the question is P = 1/31.
Learn more about the probability here:
brainly.com/question/11234923
#SPJ1