Starting with a 7. 0 x 10-5 M. Allura Red stock solution you will need to calculate the volumes required to prepare 10.00 mL solutions of 3.5 x 10-5 M, 2.8 x 10-5 M, 2.1 x 10-5 M, 1.4 x 10-5 M, and 3.5 x 10-6 M before coming to lab. What volume of the stock solution will be required to prepare 10.00 mL of a 2.1 x 10-5 M solution of Allura Red?

Answers

Answer 1

Answer:

1) 5.0 mL, 4.0 mL, 3.0 mL and 2.0 mL respectively.

2) 3.0 mL

Explanation:

Hello there!

1) In this case, by considering that the equation we use for dilutions contain the initial and final concentrations and volumes:

[tex]C_1V_1=C_2V_2[/tex]

For the first four solutions, we compute the volume of the stock one (V1) as shown below:

[tex]V_1=\frac{C_2V_2}{C_1}[/tex]

Thus, we obtain:

[tex]V_1^1=\frac{3.5x10^{-5}M*10.00mL}{7.0x10^{-5}M} =5.0mL\\\\V_1^2=\frac{2.8x10^{-5}M*10.00mL}{7.0x10^{-5}M} =4.0mL\\\\V_1^3=\frac{2.1x10^{-5}M*10.00mL}{7.0x10^{-5}M} =3.0mL\\\\V_1^4=\frac{1.4x10^{-5}M*10.00mL}{7.0x10^{-5}M} =2.0mL[/tex]

2) In this case, for a final concentration of 2.1x10-5 M and a volume of 10.00 mL, the volume of the stock solution would be:

[tex]V_1=\frac{2.1x10^{-5}M*10.00mL}{7.0x10^{-5}M} =3.0mL[/tex]

Best regards!


Related Questions

factor 7y2 53y 28. question 5 options: a) (y 5)(7y 2) b) (7y 4)(y 7) c) (y – 12)(7y – 1) d) (7y – 2)(y – 14)

Answers

The correct factorization is (7y + 4)(y + 7) is (7y + 4)(y + 7) (option B)

How to factor the expression?

For us to factor the expression 7y² + 53y + 28, we need to find two binomial factors that when multiplied together will yield the original expression.

Let us test among the given options, to find the correct factorization:

a. [tex](y + 5)(7y + 2) = 7y^2 + 2y + 35y + 10 = 7y^2 + 37y + 10[/tex]

b.  [tex](7y + 4)(y + 7) = 7y^2 + 49y + 4y + 28 = 7y^2 + 53y + 28[/tex]

c. [tex](7y - 2)(y - 14) = 7y^2 - 14y - 2y + 28 = 7y^2 -16y + 28[/tex]

d. [tex](y - 12)(7y - 1) = 7y^2 - y - 84y + 12 = 7y^2 - 85y + 12[/tex]

Therefore, the correct factorization is (7y + 4)(y + 7), which is option B.

Learn about factorization here https://brainly.com/question/25829061

#SPJ4

Complete question:

Factor 7y² + 53y + 28

Question 5 options:

A)

(y + 5)(7y + 2)

B)

(7y + 4)(y + 7)

C)

(7y – 2)(y – 14)

D)

(y – 12)(7y – 1)

R-410A at 1 MPa and 60° °C is expanded in a piston/cylinder at 500 kPa, 40° °C in a reversible process. Find the changes of entropy, enthalpy, and volume for this process.

Answers

The changes in entropy, enthalpy, and volume for this process are -0.049 kJ/kg.K, -23 kJ/kg, and 0.00172 m^3/kg respectively.

Given: R-410A at 1 MPa and 60° °C is expanded in a piston/cylinder at 500 kPa, 40° °C in a reversible process. We need to find the changes of entropy, enthalpy, and volume for this process. The basic formula for the change in entropy is given by ∆S = Q/THere, Q is the heat energy that enters or leaves the system during the process and T is the temperature at which this process takes place. The change in enthalpy is given by, ∆H = Q - WHere, Q is the heat energy that enters or leaves the system during the process and W is the work done on or by the system during the process. The change in volume can be calculated by using the formula ∆V = V2 - V1 where V1 and V2 are the initial and final volumes of the gas respectively.

We are given, Initial pressure, P1 = 1 MPa Final pressure, P2 = 500 kPa Initial temperature, T1 = 60 °C = 333 K Final temperature, T2 = 40 °C = 313 K Vaporization/condensation pressure at 60 °C = 2.6 MPa Specific heat of the refrigerant R-410A, cP = 1.15 kJ/kg.K Specific heat of the refrigerant R-410A, cV = 0.88 kJ/kg.K Molar mass of R-410A, M = 72.6 g/mol Universal gas constant, R = 8.314 J/mol.K Using the ideal gas equation PV = nRT, we can find the initial and final volumes of the gas.V1 = n1RT1/P1 = (1/72.6) * 8.314 * 333/1 * 10^6 = 0.00225 m^3/kgV2 = n2RT2/P2 = (1/72.6) * 8.314 * 313/0.5 * 10^6 = 0.00397 m^3/kg Change in volume = V2 - V1 = 0.00172 m^3/kg Now, using the formula for the change in entropy, we can find the entropy change ∆S = cP * ln(T2/T1) - R * ln(P2/P1)∆S = 1.15 * ln(313/333) - 8.314 * ln(500/1)∆S = -0.049 kJ/kg.K Using the formula for the change in enthalpy, we can find the enthalpy change ∆H = cP * (T2 - T1) = 1.15 * (313 - 333)∆H = -23 kJ/kg.

Hence, the changes in entropy, enthalpy, and volume for this process are -0.049 kJ/kg.K, -23 kJ/kg, and 0.00172 m^3/kg respectively.

know more about entropy

https://brainly.com/question/32167470

#SPJ11

Which of the following compounds does NOT have a pH-dependent solubility?
a. Mg(OH)^2
b.Na2O
c. PbS
d. AgI
e.CaCo3

Answers

Sodium oxide [tex]Na_2O[/tex] is a compound that does NOT have a pH-dependent solubility among the given options. Thus, option B is correct.

Sodium oxide is an ionic compound that is formed when the positive ions of the sodium cations combine with the negative ions of the oxide anions. When the Sodium oxide is dissolved in water, it will completely disassociate into sodium ions and hydroxide ions.

This disassociation of ions is purely independent of pH value. Because this reaction will not involve any proton or electron transfer. The solution is mainly determined by the ionic bond strength within the bond range and also based on the ability of water molecules to solvate the resulting ions.

To learn more about Sodium oxide

https://brainly.com/question/29068032

#SPJ4

SOP-toluene (notebook places on top of very hot hot plate next to full beaker)

Answers

A notebook should not be placed on top of a hot plate next to a full beaker of toluene as it goes against the sop of toluene.

When working with hazardous chemicals like toluene, it is important to abide by the guidelines outlined in the SOP.

Placing a notebook on a hot plate next to a beaker of toluene introduces additional safety risks unrelated to handling the toluene itself.

An object like a notebook is a flammable substance that poses a fire hazard when placed near a hot plate. Having a full beaker of toluene next to it further increases the risk of fire and other accidents like chemical exposure.

Therefore, it is important to adhere to the rules given in the SOP to maintain a safe working environment by keeping flammable materials away from heat sources.

But if the situation is already out of control, it is best to contact the supervisors, safety officer, or other knowledgeable personnel who can provide specific guidance and handle the situation.

Read more about Lab SOP and safety measures on :

https://brainly.com/question/30564201

The correct question is:

How does placing a flammable object next to toluene differ from the SOP given for handling toluene?

for a certain gas reaction mixture at 298k you measured qp=2.3 x 107 and kp= 9.7 x 105. what can you say about δgo and δg for this reaction mixture?

Answers

Both the standard change in free energy and the change in free energy under non equilibrium conditions would be less than  zero.

What happens when Qp >Kp?

The concentrations (or partial pressures) of the reactants and products in a gas-phase reaction are not at equilibrium when Qp (the reaction quotient) is greater than Kp (the equilibrium constant).

If Qp > Kp, it indicates that there are more products than are needed for equilibrium in the reaction. This denotes a shift to the reactant side to achieve equilibrium and lessen the concentration of the surplus product.

Learn more about Qp:https://brainly.com/question/32234940

#SPJ1

consider a sample of water in a closed container. when the reaction h2o(l) h2o(g) has reached equilibrium, what can we say about any specific water molecule?

Answers

At equilibrium, we can say that any specific water molecule in the sample has an equal probability of existing as a liquid water molecule (H2O(l)) or a gaseous water molecule (H2O(g)).

In a closed container, when the reaction H2O(l) ⇌ H2O(g) reaches equilibrium, it means that the forward reaction (H2O(l) → H2O(g)) and the reverse reaction (H2O(g) → H2O(l)) are occurring at the same rate. At equilibrium, the concentrations of liquid water and gaseous water remain constant.

On a molecular level, the equilibrium indicates that the conversion between liquid water molecules and gaseous water molecules is balanced. This means that any specific water molecule has an equal probability of being in the liquid phase or the gas phase. The equilibrium state does not favor one particular state for individual water molecules, and their distribution between the liquid and gas phases is determined by the overall equilibrium conditions, such as temperature and pressure.

Therefore, at equilibrium, we can say that any specific water molecule in the sample has an equal chance of being a liquid water molecule or a gaseous water molecule.

Learn more about molecule: https://brainly.com/question/475709

#SPJ11

which of the following is removed when tea is brewed in hot water? group of answer choices cellulose tannins glucose caffeine sodium bicarbonate

Answers

Out of the given options, the substance that is removed when tea is brewed in hot water is tannins.

What are tannins?

Tannins are bitter-tasting compounds that are typically found in the leaves, bark, fruit, and roots of various plants. They are frequently used in food and beverages, such as tea and wine, to provide flavor and color.In the case of tea, tannins are responsible for giving it a slightly bitter flavor and an astringent feeling in the mouth.

When hot water is added to tea leaves, tannins are extracted from them and are dissolved into the water. Therefore, tannins are removed when tea is brewed in hot water.To summarize, the substance that is removed when tea is brewed in hot water is tannins.

Learn more about tannins at:

https://brainly.com/question/30969217

#SPJ11

it takes 11.2 kj of energy to raise the temperature of 145 g of benzene from 25.0°c to 70.0°c. what is the specific heat of benzene?

Answers

The specific heat of benzene is 1.74 J/(g·K) which is required to raise the temperature of 145 g of benzene from 25.0°C to 70.0°C

Specific heat is also referred to as specific heat capacity or simply heat capacity. The formula for calculating specific heat is as follows:

Q = m × c × ΔT

So, for this question, we can solve for the specific heat of benzene using the formula above.

We first need to convert 11.2 kJ to joules: 11.2 kJ × 1000 J/kJ = 11,200 J

Use the formula above to solve for specific heat:

c = Q / (m × ΔT)

c = 11,200 J / (145 g × 45.0°C)

c = 1.74 J/(g·K)

Therefore, the specific heat of benzene is 1.74 J/(g·K).

Learn more about specific heat here:

https://brainly.com/question/28165708

#SPJ11

.Identify the name of the carboxylic acid derived from propane
a) propanoic acid
b) methanoic acid
c) monocarboxylic acid
d) monoalkane acid

Answers

Propanoic acid is a carboxylic acid derived from propane. It has a wide range of applications in industry and is an important chemical in the production of many products.

Propanoic acid is the name of the carboxylic acid derived from propane. Propanoic acid, also known as propionic acid, is a carboxylic acid with a three-carbon chain and a single carboxyl group. It has the formula CH3CH2COOH and is a clear, colourless liquid with a pungent, rancid odor. Propanoic acid is commonly used as a food preservative and has a variety of industrial applications, including in the production of cellulose acetate propionate, herbicides, and pharmaceuticals. It is also used as a feed additive in livestock to promote growth and increase feed efficiency.

The process of deriving propanoic acid from propane involves the addition of a carboxyl group (-COOH) to the carbon chain of propane. This is achieved through a process known as carboxylation, which involves the reaction of propane with carbon dioxide (CO2) in the presence of a catalyst. The resulting product is propanoic acid, which can be purified and isolated through distillation or other separation techniques. In conclusion, propanoic acid is a carboxylic acid derived from propane. It has a wide range of applications in industry and is an important chemical in the production of many products.

know more about Propanoic acid

https://brainly.com/question/14461903

#SPJ11

Write a balanced equation sodium chloride and silver nitrate for the precipitation reaction 2 Which product in the above reaction is the precipitate?

Answers

The balanced equation for the precipitation reaction between sodium chloride (NaCl) and silver nitrate (AgNO3) can be written as:

NaCl + AgNO3 → AgCl + NaNO3

In this reaction, sodium chloride reacts with silver nitrate to produce silver chloride and sodium nitrate. The precipitate formed in this reaction is silver chloride (AgCl).

When sodium chloride and silver nitrate are mixed together, the silver cations (Ag+) from silver nitrate combine with the chloride anions (Cl-) from sodium chloride to form solid silver chloride (AgCl). This solid precipitates out of the solution as a white, insoluble solid.

The sodium cations (Na+) from sodium chloride combine with the nitrate anions (NO3-) from silver nitrate to form sodium nitrate (NaNO3), which remains in solution as it is a soluble compound.

The formation of the white precipitate, silver chloride, indicates that a precipitation reaction has occurred. Precipitation reactions involve the formation of an insoluble solid from the combination of two soluble compounds. In this case, the combination of silver cations and chloride anions results in the formation of the insoluble silver chloride precipitate.

Learn more about balanced equation here : brainly.com/question/7181548

#SPJ11

A solution contains a weak monoprotic acid HA and its sodium salt NaH both at 0.1 M concentration. Show that (OH) Kw/Ka.
Buffer Solutions and Concentration
Buffer solutions are composed of a solution of a weak acid and conjugate base. Buffer solutions can resists changes in the pH by neutralizing any added base with the weak acid and any added acid with the conjugate base. The pH of a buffer solution can be controlled up to a point. The pH of a buffer solution depends on the pKa of the weak acid and the ratio in the concentrations of conjugate base to weak acid. The pH can then be related to the concentration of hydroxide and hydrogen ions.

Answers

(OH) Kw/Ka is equal to the concentration of hydroxide ions divided by the equilibrium constant of the weak acid (Ka).

The dissociation of the weak acid HA can be represented by the equation:

HA ⇌ H+ + A-

The equilibrium constant for this dissociation is defined as Ka = [H+][A-]/[HA].

In the presence of its conjugate base A-, the weak acid HA can react with hydroxide ions (OH-) according to the equation:

HA + OH- ⇌ H2O + A-

The equilibrium constant for this reaction is Kw = [H+][OH-].

Rearranging the equation from step 4, we get [OH-] = Kw/[H+].

Substituting this expression for [OH-] in the equation from step 2, we have:

Ka = [H+][A-]/[HA] = ([H+] * Kw/[H+])/[HA] = Kw/[HA]

Rearranging the equation from step 6, we get Kw/Ka = [HA]/Kw.

The expression (OH) Kw/Ka shows the ratio of the concentration of the weak acid HA to the equilibrium constant Kw. It illustrates the relationship between the concentration of hydroxide ions (OH-) and the dissociation constant of the weak acid.

To know more about concentration, visit:

https://brainly.com/question/28564792

#SPJ11

Consider the reaction corresponding to a voltaic cell and its standard cell potential.
Zn(s)+Cu2+(aq)⟶Cu(s)+Zn2+(aq)Zn(s)+CuX2+(aq)⟶Cu(s)+ZnX2+(aq)
Eocell=1.1032 VEcello=1.1032 V

Answers

Answer:

The given reaction represents a voltaic cell with a standard cell potential (E°cell) of 1.1032 V. The cell consists of zinc (Zn) as the anode and copper (Cu) as the cathode. The cell notation is Zn(s) | Zn2+(aq) || Cu2+(aq) | Cu(s).

Explanation:

A voltaic cell is a device that generates electrical energy using chemical reactions. It consists of two electrodes, an anode and a cathode, separated by an electrolyte. A standard cell potential is the difference in potential between the anode and the cathode of the cell under standard conditions.

The reaction corresponding to a voltaic cell can be written as:Zn(s) + Cu2+(aq) ⟶ Cu(s) + Zn2+(aq)The standard cell potential of this reaction is given as E°cell = 1.1032 V.The cell potential can also be calculated using the Nernst equation:Ecell = E°cell - (RT/nF)ln(Q)where Ecell is the cell potential, E°cell is the standard cell potential, R is the gas constant, T is the temperature, n is the number of electrons transferred in the reaction, F is Faraday's constant, and Q is the reaction quotient.For the reaction Zn(s) + CuX2+(aq) ⟶ Cu(s) + ZnX2+(aq), the cell potential can be calculated as:Ecell = E°cell - (RT/nF)ln(Q)The reaction quotient Q for this reaction can be written as:Q = [Cu+][ZnX2+]/[Zn2+][CuX2+]where [Cu+] and [Zn2+] are the concentrations of Cu2+ and Zn2+ ions in the solution, and [CuX2+] and [ZnX2+] are the concentrations of CuX2+ and ZnX2+ ions in the solution.Substituting the values given:Ecell = 1.1032 V - (8.314 J/K mol)(298 K)/ (2)(96485 C/mol) ln([Cu+][ZnX2+]/[Zn2+][CuX2+])Ecell = 1.1032 V - 0.0256 ln([Cu+][ZnX2+]/[Zn2+][CuX2+])The value of Ecell can be calculated using the above equation.

To know more about metal ion visit:

https://brainly.com/question/17168003

#SPJ11

You have the following solutions, all of the same molar concentration: KI, HI, N2H4, and (CH3)3NHI. Rank them from the lowest to the highest hydroxide-ion concentration.

Answers

The order of decreasing hydroxide ion concentration is the following: (CH3)3NHI > N2H4 > HI > KI.

What are acids and bases?

Acids and bases are chemical compounds that may be found in a wide range of everyday items, including food, cleaning agents, and medicine. Acids have a sour taste and react with metals to form hydrogen gas and salt.Bases have a bitter taste, feel slippery, and do not react with metals. Bases are generally able to dissolve acids. They are chemical compounds that release hydroxide ions when they dissolve in water.

A solution's pH is determined by its acidity or basicity, which is determined by the concentration of hydrogen ions (H+) and hydroxide ions (OH-) present. A substance with a low pH is acidic, whereas one with a high pH is basic or alkaline.

KI, HI, N2H4, and (CH3)3NHI have the same molar concentration and are all solutions. The hydroxide-ion concentration must be ranked from lowest to highest. The greater the hydroxide ion concentration, the more basic the solution. As a result, the lower the hydroxide ion concentration, the more acidic the solution.

The order of decreasing hydroxide ion concentration is the following: (CH3)3NHI > N2H4 > HI > KI.

Learn more about hydroxide ion concentration here:

https://brainly.com/question/28173930

#SPJ11

Write the equilibrium constant expression for this reaction:

Answers

The equilibrium constant expression for the reaction CH₃OH(aq) + Cl⁻(aq) -> CH₃Cl(aq) + OH⁻(aq) is [CH₃Cl][OH⁻] / [CH₃OH][Cl⁻]

How do I determine the equilibrium constant expression?

The equilibrium constant for a given reaction is defined by the following formula

Equilibrium constant = [Product]ᵃ / [Reactant]ᵇ

Where

a and b are coefficients of products and reactants respectively

With the above information, we can obtain the  equilibrium constant expression for the reaction CH₃OH(aq) + Cl⁻(aq) -> CH₃Cl(aq) + OH⁻(aq). Details below:

Equation: CH₃OH(aq) + Cl⁻(aq) -> CH₃Cl(aq) + OH⁻(aq)Equilibrium constant expression =?

Equilibrium constant expression = [Product]ᵃ / [Reactant]ᵇ

Equilibrium constant expression = [CH₃Cl][OH⁻] / [CH₃OH][Cl⁻]

Thus, we can conclude that the equilibrium constant expression for the reaction is [CH₃Cl][OH⁻] / [CH₃OH][Cl⁻]

Learn more about equilibrium constant:

https://brainly.com/question/16589765

#SPJ1

Which of the following is TRUE?
a. An effective buffer has a [base]/[acid] ratio in the range of 10-100
b. A buffer is most resistant to pH change when [acid] = [conjugate base]
c. An effective buffer has very small absolute concentrations of acid and conjugate base
d. None of the above are true

Answers

A buffer is most resistant to pH change when [acid] = [conjugate base] is TRUE

Define buffer solution

A buffer is a substance that can withstand a pH change when acidic or basic substances are added. Small additions of acid or base can be neutralised by it, keeping the pH of the solution largely constant. This is crucial for procedures and/or reactions that call for particular and stable pH ranges.

The concentration of acid and conjugate base in the system directly affects how well a buffer functions. Thus, a poor buffer will be one with a very low absolute concentration of acid and conjugate base.

The pH change resistance of a buffer is greatest when the concentration of weak acid is equal to that of conjugate base. A buffer is more efficient when the weak base to conjugate acid ratio is higher.

To learn more about buffer  :

https://brainly.com/question/8676275

#SPJ4

Which of the following indicators is the best choice for this titration? a) Methyl orange (pH range 3.2 – 4.4) b) Methyl red (pH range 4.6 – 6.0) c) Phenolphthalein (pH range 8.2 - 10) d) Bromomethyl blue (pH range 6.1 – 7.6)

Answers

The required correct answer is c) Phenolphthalein (pH range 8.2 - 10).

Explanation :  In order to determine which indicator is the best choice for the titration, we need to know the pH range of the equivalence point of the acid and base involved. For example, if the pH range of the equivalence point is 3.2 – 4.4, we would choose an indicator with a pH range close to that.

Each indicator changes color at a specific pH value. Phenolphthalein is the best choice for this titration because its pH range is closest to the equivalence point which is around pH 9.3 for the titration of strong base and weak acid. This is within the pH range of phenolphthalein (8.2 – 10).

In other words, phenolphthalein changes color around the pH where the equivalence point of the titration will occur. Therefore, Phenolphthalein is the best choice for this titration. The correct option is c) Phenolphthalein (pH range 8.2 - 10).

Learn more about titration here https://brainly.in/question/6652836

#SPJ11

The value of ΔH° for the oxidation of solid elemental sulfur to gaseous sulfur trioxide, 2S (s, rhombic) + 3O2 (g) → 2SO3 (g) is ________ kJ/mol.

Answers

The value of ΔH° for the oxidation of solid elemental sulfur to gaseous sulfur trioxide is -791.4 kJ/mol. This means that the reaction is exothermic, and heat is released when it occurs. The reaction is also spontaneous, meaning that it will occur without any outside input of energy.

The oxidation of sulfur to sulfur trioxide is a two-step process. In the first step, sulfur reacts with oxygen to form sulfur dioxide. This reaction is exothermic, meaning that heat is released. In the second step, two molecules of sulfur dioxide react to form one molecule of sulfur trioxide. This reaction is also exothermic.

The overall reaction is exothermic, meaning that heat is released when it occurs. This is because the bonds in the products (sulfur trioxide) are stronger than the bonds in the reactants (sulfur and oxygen). The release of heat lowers the overall energy of the system, making the reaction spontaneous.

The value of ΔH° for the reaction is -791.4 kJ/mol. This means that for every mole of sulfur that is oxidized, 791.4 kJ of heat is released.

To learn more about sulfur trioxide click here: brainly.com/question/30765672

#SPJ11

Calculate the molar concentration of OH ions in a 0.570 M solution of hypobromite ion (BrO; Kb = 4.0 x 10).
Weak Base:
A Bronsted base is reversibly protonated by water in aqueous solution, such that an equilibrium state is rapidly established with some hydroxide ion product molarity value. If the base dissociation constant of this equilibrium is
, then you know that you are dealing with a weak base. This is a molarity-based constant. The "weak" term generally means that the product molarity values of the reaction at equilibrium, will be much smaller than the remaining base molarity. The exact hydroxide ion molarity formed requires evaluation of the expression.

Answers

The molar concentration of OH ions in a 0.570 M solution of hypobromite ion is 1.60 × 10-8 Molar.

First, let's write the equation for the reaction of hypobromite ion, BrO- with water:Hypobromite ion is a base and reacts with water to give hydroxide ions and bromite ions. The base dissociation constant of hypobromite ion, Kb is 4.0 × 10-6Molar concentration of OH- ions in a 0.570 M solution of hypobromite ion can be calculated using the following equation:Kb = [OH-][BrO-]/[HOBr]We have the value of Kb and concentration of hypobromite ion, [BrO-]. Thus, we can calculate the concentration of OH- ions.[HOBr] is the concentration of hypobromous acid which can be calculated using the following equation:Kb = [OH-][BrO-]/[HOBr][HOBr] = [BrO-][OH-]/Kb[HOBr] = 0.570 × [OH-]/4.0 × 10-6[HOBr] = 142.5 × [OH-]Now, substituting the value of [HOBr] in the equation derived above, we get:142.5 × [OH-] = [BrO-][OH-]/Kb[OH-] = (Kb × [BrO-])/142.5[OH-] = (4.0 × 10-6 × 0.570)/142.5[OH-] = 1.60 × 10-8 Molar

So, The molar concentration of OH ions in a 0.570 M solution of hypobromite ion is 1.60 × 10-8 Molar.

Learn more about hypobromite ion here,

https://brainly.com/question/9378259

#SPJ11


15. A reconstituted sterile injection of cefazolin contains 4 g
of cefazolin in 8 mL of solution. What is the percent (%) strength
of this solution?
A 40%
B. 50%
C. 60%
D. 30%

Answers

The percent strength of the reconstituted sterile injection of cefazolin that contains 4 g of cefazolin in 8 mL of solution is 50% (Option B).

First, you need to find the amount of drug in 100 mL of the solution, then you can calculate the percentage strength of the solution as follows:

Given: Amount of cefazolin in the solution = 4 g

Volume of solution = 8 mL

Percent strength of the solution in percentage

We can find the percent strength of the solution as follows: We know,100 mL of solution will contain 5 times the given volume (8 mL). Hence, we need to find the amount of drug present in 100 mL of solution.= (4 g / 8 mL) x 100 mL= 50 g/mL

We know the definition of percent strength as follows:

Percent strength of a solution = (amount of drug in the solution/volume of solution) x 100= (50 g/mL) x 100%= 50%

Therefore, the percent (%) strength of the solution is 50%. Hence, option B is correct.

You can learn more about cefazolin at: brainly.com/question/29475728

#SPJ11

A piece of unknown metal with a mass of 20.4 g is heated to 108.4∘C and then dropped into a coffee cup calorimeter containing 187.4 g of water at 10.3∘C. When thermal equilibrium is reached, it is found that the temperature of the water increased by 3.2∘C. What is the specific heat of the unknown metal? Note: Specific Heat Capacity of water =4.18 J/g∗∘C

Answers

The specific heat of the unknown metal is 119.069 J/g°C.

When two bodies, each having a different temperature, are in contact with each other, the temperature of the colder body increases and that of the hotter body decreases till they reach a common temperature. The quantity of heat lost by the hot body is equal to the quantity of heat gained by the cold body. This principle is called the principle of calorimetry.So here,The formula for specific heat is:Q = mcΔTwhere Q = heat energy, m = mass, c = specific heat capacity, and ΔT = change in temperature.For the water:Q = (187.4 g) (4.18 J/g*°C) (3.2°C)Q = 2423.424 JFor the metal:Q = (20.4 g) (c) (108.4°C - T)Q = 20.4c(108.4 - T)Set the heat equal to each other:Q = Q2423.424 J = 20.4c(108.4°C - T)T = 10.3°C + 3.2°C = 13.5°C2423.424 J = 20.4c(108.4°C - 13.5°C)2423.424 J = 20.4c(94.9°C)119.069 = cTherefore, the specific heat of the unknown metal is 119.069 J/g°C.

Learn more about specific heat here:

https://brainly.com/question/31608647

#SPJ11

how does the ratio of h:o atoms in your disaccharaide compare to the h:o ratio in glucose

Answers

The ratio of hydrogen (H) to oxygen (O) atoms in a disaccharide may differ from the H:O ratio in glucose. The disaccharide could have a higher or lower H:O ratio compared to glucose, depending on its chemical structure and composition.

Disaccharides are formed by the condensation of two monosaccharide units, resulting in the formation of a glycosidic bond. The specific arrangement and types of monosaccharides involved in the disaccharide will determine the H:O ratio. For example, sucrose, a common disaccharide composed of glucose and fructose, has a H:O ratio of 2:1, which is the same as glucose. In this case, the H:O ratio remains unchanged.

However, other disaccharides, such as lactose or maltose, may have different H:O ratios compared to glucose. Lactose consists of glucose and galactose, resulting in a H:O ratio of 4:2. Maltose, composed of two glucose units, also has a H:O ratio of 4:2. These disaccharides have a higher H:O ratio than glucose due to the presence of additional hydrogen atoms in the structure.

In summary, the H:O ratio in a disaccharide can vary depending on its composition and structure, and it may be higher or lower than the H:O ratio in glucose.

Learn more about Disaccharides here:

https://brainly.com/question/3909170

#SPJ11

onsider the following reaction at 298 K: 2H2S(g) + SO2(g) → 3S(s, rhombic) + 2H2O(g), ΔG°rxn = −102 k
Is the reaction more or less spontaneous under these conditions than under standard conditions?

Answers

The reaction is more spontaneous under the given conditions (298 K) compared to standard conditions. The standard conditions typically refer to 298 K and 1 bar pressure, whereas the given conditions specify only the temperature.

The spontaneity of a reaction is determined by the Gibbs free energy change (ΔG) of the reaction. In this case, the given value is ΔG°rxn, which represents the standard Gibbs free energy change. Under standard conditions, the reaction has a ΔG°rxn of -102 kJ. A negative ΔG°rxn indicates that the reaction is spontaneous under standard conditions. To determine if the reaction is more or less spontaneous under the given conditions, we need to compare the ΔG value at 298 K to the standard ΔG°rxn. However, the ΔG value at 298 K is not provided. Without this information, we cannot definitively determine whether the reaction is more or less spontaneous under the given conditions. In general, temperature affects the spontaneity of a reaction. Increasing the temperature can make a reaction more spontaneous if it decreases the ΔG value. If the ΔG value at 298 K is smaller (more negative) than the standard ΔG°rxn, then the reaction is more spontaneous under the given conditions.

Learn more about spontaneous reaction here : brainly.com/question/31199175

#SPJ11

what is the purpose of washing the precipitate with hot water in step 3(a) of the procedure? be as specific as possible in your answer

Answers

In the procedure, step 3(a) states that washing the precipitate is necessary. The reason for washing the precipitate with hot water is that it removes any remaining impurities and unreacted chemicals.

Washing the precipitate helps to purify it and remove unwanted particles. Hot water is used because it can dissolve impurities and wash them away more effectively than cold water. Additionally, the hot water can increase the rate of precipitation, making the process faster. If the precipitate is not washed properly, it can have a negative effect on the final product. The washing process ensures that the precipitate is pure and ready for further use. Overall, washing the precipitate is a crucial step in the procedure to ensure the purity and quality of the final product.

To know more about impurities visit:

https://brainly.com/question/32369276

#SPJ11

why is the equilbrium constant of the dissociation of kht equal to the square of the bitartrate concentation

Answers

The equilibrium constant of the dissociation of potassium hydrogen tartrate (KHT) is equal to the square of the bitartrate concentration due to the dissociation of KHT into two hydrogen ions (H+) and bitartrate ions (HC₄H₄O₆⁻) as shown below:

KHT ⇌ H+ + HC₄H₄O₆⁻

Here, the equilibrium constant expression for the dissociation reaction of KHT can be written as follows:

Kc = [H+] [HC₄H₄O₆⁻]/ [KHT]

As we know, KHT dissociates into two moles of bitartrate ion (HC₄H₄O₆⁻) and one mole of hydrogen ion (H+). So, after the dissociation of KHT, the concentration of the bitartrate ion (HC₄H₄O₆⁻) will be double that of the hydrogen ion (H+).

Therefore, the concentration of hydrogen ion (H+) will be equal to the square root of the concentration of bitartrate ion (HC₄H₄O₆⁻).

Hence, Kc = [H+]²[HC₄H₄O₆⁻]/ [KHT] = [HC₄H₄O₆⁻]²/ [KHT]

This is the reason why the equilibrium constant of the dissociation of KHT is equal to the square of the bitartrate concentration.

You can learn more about equilibrium constants at: brainly.com/question/28559466

#SPJ11

the partial negative charge at one end of a water molecule is attracted to the partial positive charge of another water molecule. what is this attraction called?group of answer choicesa covalent bonda hydrogen bondan ionic bonda van der waals interaction

Answers

The attraction called "hydrogen bond."When two water molecules come close together, they can form a special type of attraction that is known as a hydrogen bond.

Hydrogen bonding happens when the partially negative end of one water molecule is attracted to the partially positive end of another water molecule.Hydrogen bonding, an intermolecular force, is a type of electrostatic force. This attraction is formed between a hydrogen atom attached to an atom that has a partial negative charge and another atom with a partial negative charge. Partial negative charge: It occurs when electrons in a covalent bond are not distributed equally. Because oxygen is more electronegative than hydrogen, the electrons in a water molecule tend to be drawn closer to the oxygen atom, resulting in a partial negative charge on the oxygen. On the other hand, hydrogen atoms have a partial positive charge due to the electronegativity difference. These charges make water molecules attract each other.

To know more about hydrogen bond visit:

https://brainly.com/question/31139478

#SPJ11

a tank contains 90 kg of salt and 2000 l of water. pure water enters a tank at the rate 8 l/min. the solution is mixed and drains from the tank at the rate 4 l/min.

Answers

The concentration of salt in the tank remains constant at 45 kg/m³.

To determine the concentration of salt in the tank, we need to consider the amount of salt and the volume of water in the tank.

Given:

Amount of salt in the tank: 90 kgVolume of water in the tank: 2000 liters

To calculate the concentration, we divide the mass of salt by the volume of water:

Concentration = Mass of salt / Volume of water

Concentration = 90 kg / 2000 liters

However, we need to convert the volume from liters to cubic meters for consistency. Since 1 liter is equal to 0.001 cubic meters, we have:

Concentration = 90 kg / (2000 liters * 0.001 m³/liter)

Concentration = 90 kg / 2 m³

Concentration = 45 kg/m³

Therefore, the concentration of salt in the tank remains constant at 45 kg/m³, regardless of the flow rates of pure water entering and the solution draining from the tank.

To learn more about Concentration, Visit:

https://brainly.com/question/17206790

#SPJ11

a reaction of 22.85 g of sodium hydroxide with 20.82 g of hydrogen chloride produces 10.29 g of water and X g of sodium chloride.

X = ____ g

Answers

The mass of 22.85 g of sodium hydroxide with 20.82 g of hydrogen chloride produces 10.29 g of water and X g of sodium chloride is 33.389 g.

To find the mass of Sodium Chloride, NaCl, we must write the reaction between sodium hydroxide and hydrogen chloride. The balanced chemical equation. NaOH + HCl → NaCl + H₂O

The molar mass of NaOH = 23 + 16 + 1 = 40 g/molThe molar mass of HCl = 1 + 35.5 = 36.5 g/mol

Using the balanced chemical equation and the Law of Conservation of Mass, we can write the equation:

Number of moles of NaOH used = Number of moles of HCl usedNumber of moles of NaCl formed = Number of moles of HCl used

Mass of NaOH = 22.85 g

Molar mass of NaOH = 40 g/molNumber of moles of NaOH used = 22.85 g ÷ 40 g/mol = 0.57125 mol

Mass of HCl = 20.82 g

Molar mass of HCl = 36.5 g/molNumber of moles of HCl used = 20.82 g ÷ 36.5 g/mol = 0.57041 mol

From the balanced equation:

Number of moles of NaCl formed = Number of moles of HCl used = 0.57041 mol

Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol

Mass of NaCl formed = Number of moles of NaCl formed × Molar mass of NaCl

= 0.57041 mol × 58.5 g/mol

= 33.389 g

Therefore, the mass of sodium chloride, NaCl, formed is 33.389 g.

Learn more about sodium chloride: https://brainly.com/question/14466891

#SPJ11

what is the direction of the force on the proton in the figure?

Answers

In the given figure, a proton is moving with a velocity v perpendicular to a uniform magnetic field B.

As a result, a force acts on the proton that can be determined using the right-hand rule.For this purpose, the thumb, forefinger, and middle finger of the right hand are used.

If the thumb is pointing in the direction of the velocity of the proton v and the forefinger in the direction of the magnetic field B, the force acting on the proton can be found by curling the middle finger toward the palm of the hand. This force is found to be perpendicular to both the velocity of the proton v and the magnetic field B.

Therefore, the direction of the force on the proton is perpendicular to both the velocity and the magnetic field. This is known as the Lorentz force and is given by the equation F = q(v × B), where F is the force, q is the charge of the proton, v is its velocity, and B is the magnetic field.

To know more about uniform magnetic field refer here: https://brainly.com/question/1594227#

#SPJ11

Which one of the following undergoes the most rapid nitration upon treatment with HNO3/H2SO4? A) toluene B) benzene C) bromobenzene D) nitrobenzene E) meta-dinitrobenzene

Answers

Benzene undergoes the most rapid nitration upon treatment with HNO₃/H₂SO₄ Option B is correct.

Nitration is a chemical reaction where a nitro group (-NO₂) is introduced into an organic compound. In this case, when benzene is treated with a mixture of nitric acid (HNO₃) and sulfuric acid (H₂SO₄), it undergoes electrophilic aromatic substitution to form nitrobenzene. Benzene has a high reactivity towards nitration due to its aromaticity, which provides a stable electron delocalization system.

The presence of electron-donating groups or substituents on the benzene ring can further increase its reactivity towards nitration. In comparison, toluene, bromobenzene, and meta-xylene are less reactive towards nitration, while nitrobenzene is already a product of nitration and would not undergo further rapid nitration. Option B is correct.

To know more about the Nitration, here

https://brainly.com/question/32089498

#SPJ4

choose the lewis structure for the no2− ion. include resonance structures.

Answers

The resonance structures for the nitrite ion can be shown by option D

What is a resonance structure?

Resonance structures can be used to visualize how electrons delocalize in certain molecules or ions. They are used to describe molecules or ions that have numerous legitimate electron configurations and hence cannot be adequately represented by a single Lewis structure.

In a resonance structure, different double bonds and lone electron pairs can be positioned while keeping the overall connectivity of the atoms the same. The overall description of the molecule or ion is provided by these several resonance structures, with the real structure being an average or hybrid of the various resonance contributors.

Learn more about resonance structures:https://brainly.com/question/25022370

#SPJ4

Other Questions
Which is the focus of mr. milner's thoughts as he approaches his "dissolution"? Plants that can best resist a variety of environmental challenges are most likely:_________ Create value propostion canvas for KPU :1) Describe jobs, pains and gains of students-You can choose domestic or international students as a customer segment, just specify in your answer.2) Describe Product/ service, pain and gain cradtors that KPU provides. Can you please tell me the connection to human rights for this passage. Thank you List three contributing factors of an eating disorder Plzz help ASAP Suppose an American business owner purchases chocolates from Belgium in order to sell them in her shops. This would be entered as a ____________ item under the ___________________ section of the U.S. current account. Consider the goods and services balance. According to the table, the United States is running a trade ____________ .The current account balance suggests that U.S. current account transactions (exports and imports of goods and services, as well as inflow and outflow of investment income and transfers) created outpayments of foreign currencies from the United States that were __________________the inpayments of foreign currencies to the United States.Any surplus or deficit in one account must be offset by deficits or surpluses in other balance-of-payments accounts. Because the current account is in ____________ , the excess of foreign currency held by Americans must either be loaned to foreigners or used to buy foreign stocks or bonds. All of these transactions are then recorded in the _______________account. Since any imbalance in one account automatically leads to an equal, but opposite, imbalance in the other, the balance of payments is always _____________ My friend Yoy purchased some rews for $3 each and some jooghs for$5 each. The total cost was about $60. Altogether, he purchased 18items.Write a system of equations, in standard form, to model therelationship between Yoy's rews (x) and jooghs (y). functions A and B are shown in the equation and graph. select the true statement. You want to put a 5 inch thick layer of topsoil for a new 26 ft by 27 ft garden. The dirt store sells by the cubic yards. How many cubic yards will you need to order? The store only sells in increments of 1/4 cubic yards. Write a procedure that produces N values in the Fibonacci number series and stores them in an array of doubleword then display the array to present Fibonacci numbers in hexadecimal (calling the DumpMem method from the Irvine32 library). Input parameters should be a pointer to an array of doubleword, a counter of the number of values to generate. Write a test program that calls your procedure, passing N = 30. The first value in the array will be 1, and the last value will be 832040 (000CB228 h) rectangle pqrs will be translated to the point Q will be located at 8,3 .what will be the.coordinates of point R What happens to warm air when it cools?AIt sinks back down to Earth.BIt is absorbed into clouds.It remains in Earth's upper atmosphere.DIt breaks apart and disappears. 11 - x when x= -4 how do you solve this What is the shape of DNA? 50:01Which of the following statements is FALSE?a.African Americans, slave and free, were excluded from political participation in Texas.b.Freedmen often had to petition the state legislature to remain free.c.Some freedmen were granted freedom but had few other rights.d.Tensions over salvery caused many Texans to join the Know-Nothing Party. 8 ftFind the area of the figure. Describe several ways that personal and government budgeting are similar. In addition, explain one important way theyare different. Consider the tangency condition discussed in consumer theory. What is required for the tangency condition to be sufficient as well as necessary condition for optimal consumption OA. Preferences are strictly convex. OB. Preferences are weakly convex OC. Monotonic preferences OD. Goods are neutral goods Write a structural formula for the principal organic product formed in the reaction of methyl bromide with each of the following compounds: 1. Sodium hydroxide 2. Potassium ethoxide 3. Sodium benzoate4. Lithium azide Pls help ASAP will mark Brainlyest!!Which statement correctly compares a short story to a novel?1.A short story is compact and therefore focuses on only one element of the narrative arc.2.A novel is shorter than a short story and can be read in a single sitting.3.Novels contain a theme and message while short stories do not.4.A short story contains all the elements of a novel, but in a more compact package.