Answer:
H
Explanation:
try not to put your hands on him
calculate the mass in 4.05*10^22 molecules of calcium phosphate
Answer:
m = 20.9 g.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve this problem by recalling both the Avogadro's number for the calculation of the moles in the given molecules of calcium phosphate and the molar mass of this compound in order to secondly calculate the mass as shown on the following setup:
[tex]m=4.05x10^{22}molecules*\frac{1mol}{6.022x10^{23}}*\frac{310.18g}{1mol}\\\\m=20.9g[/tex]
Regards!
True or false? An organism may play more than one role in a food web
Answer:
true
Explanation:
because an organism have many roles in food web
"A space shuttle travels around the Earth at a constant speed of 28000 kilometers per hour. If it takes 90 minutes to complete one orbit, how far is its journey around Earth?
"
Answer:
42000km
Explanation:
Average Speed (v) can be calculated using the formula as follows:
Average speed = distance (d) ÷ time (t)
According to this question, a space shuttle travels around the Earth at a constant speed of 28000 km/hr in 90 minutes.
Since 60 minutes = 1 hr
90 minutes = 90/60
= 3/2 or 1.5hours.
Using speed = distance/time
Distance (km) = speed × time
Distance = 28000 km/hr × 1.5hr
Distance = 42000km
What will be the pH change when 20.0 mL of 0.100 M NaOH is added to 80.0 mL of a buffer solution consisting of 0.163 M NH3 and 0.188 M NH4Cl
Answer:
[tex]pH=9.32[/tex]
Explanation:
Hello there!
In this case, according to the given scenario, it turns out necessary for us to realize that the addition of NaOH consumes the conjugate base, NH4Cl, and produces more base, NH3; that is why the reaction taking place is:
[tex]NH_4^++OH^-\rightarrow NH_3+H_2O[/tex]
Thus, the reacting moles of ammonium and hydroxide ions are:
[tex]n_{NH_4^+}=0.0800L*0.188mol/L=0.01504mol\\\\n_{OH^-}=0.0200L*0.100mol/L=0.00200mol[/tex]
Thus, the resulting moles of ammonium and ammonia are respectively:
[tex]n_{NH_4^+}=0.01504mol-0.00200mol=0.01304mol\\\\n_{OH^-}=0.0800L*0.163mol/L+0.00200mol=0.01504mol[/tex]
Then, by using the Henderson-Hasselbach equation and recalling the pKb of ammonia (4.74), we first calculate the pOH as follows:
[tex]pOH=pKb+log(\frac{n_{NH_4^+}}{n_{NH_3}} )\\\\pOH=4.74+log(\frac{0.01304mol}{0.01504mol} )\\\\pOH=4.68[/tex]
And finally the pH:
[tex]pH=14-4.68\\\\pH=9.32[/tex]
Regards!
Which of the following natural hazards occur for a long period of time?
tornado
earthquake
drought
thunderstorm
Answer:
drought
Explanation:
droughts are long periods without water
Who was the first person to suggest the existence of atoms?
Answer:
Democritus first introduced the idea of the atom almost 2500 years ago.
Answer:
B. Democritus
Explanation:
What is the overall charge of an ion that has 31 protons, 36 electrons, and 30 neutrons?
Answer:
(d) the ion with 24 electrons, 30 neutrons, and a 3+ charge ... (b) the ion with 36 electrons, 35 protons, and 45 neutrons.
The table below provides data about a gas sample.
Volume
1.0 L
Pressure
303.9 kPa
Temperature
323 K
Which of the following can be determined using the data?
A the chemical composition of the gas
B. the condensation temperature of the gas
C. the distance between gas molecules in the sample
D. the number of gas molecules in the sample
Answer:
the number of gas molecules in the sample
which of the following illustrates a reversible change a cooking corn be rusting c frying egg and the boiling water
What are the laws and calculations governing gas behavior?
Answer:
Laws governing gas behavior.
Explanation:
Boyle's law:
It relates the pressure and volume of an ideal gas at a constant temperature.
According to this law:
"The volume of a fixed amount of gas at constant temperature is inversely proportional to its pressure".
[tex]P \alpha V[/tex].
Charle's law:
It relates the volume and absolute temperature of an ideal gas at a constant pressure.
According to this law:
"The volume of a fixed amount of gas at constant pressure is directly proportional to its absolute temperature".
[tex]V \alpha T[/tex].
Avogadro's law:
According to this law:
equal volumes of all gases under the same conditions of temperature and pressure contain, an equal number of moles.
[tex]V \alpha n[/tex].
Ideal gas equation:
By combining all the above-stated gas laws, this equation is formed as shown below:
[tex]V \alpha \frac{nT}{P} \\=> V= R. nT/ P\\=>PV=nRT[/tex]
R is called universal gas constant.
It has a value of 0.0821L.atm.mol-1.K-1.
Answer:
Boyle's law, Charle's law, Guy Lussac's law and Avogadro's law
Explanation:
All the gases behaves similarly when the environment conditions are normal. But when the physical condition changes like when the pressure, volume or temperature changes, the gas behaves differently and shows a deviation.
The number of gas laws are :
Boyle's Law
Boyle's law states that when the temperature remaining constant, the pressure of the gas varies inversely to the volume of the gas.
i.e. [tex]P \propto \frac{1}{V}[/tex]
Charle' law
Charle's law states that when pressure is constant, the temperature of a gas is directly proportional to the volume.
i.e. , [tex]$T \propto V$[/tex]
Gay Lussac's law
Gay - Lussa law states the volume and the mass of the pressure of the gas is directly proportional to the temperature of the gas.
i.e. P.T = constant
Avogadro's law
It states that under the conditions of same pressure as well as temperatures, the gases having equal volumes will have same numbers of molecules.
i.e. [tex]\frac{V_1}{n_1}=\frac{V_2}{n_2}[/tex] = constant
heating curve shows temperature verses energy gain. Which parts of the curve represent a gain in potential energy?
100
Temperature (°C)
0
Increasing Energy
Answer:
Those two horizontal lines.
Explanation:
Hello there!
In this case, when focusing on these heating curves, it is important to say they tend to have two constant-temperature sections and three variable-temperature sections. Thus, from lower to higher temperature, the first constant-temperature section corresponds to melting and the second one vaporization, whereas the three variable-temperature sections correspond to the heating of the solid until melting, the liquid until vaporization and the gas until the critical point.
In such a way, we infer that the boxes referred to constant temperature are referred to a gain in potential energy, that is, the two horizontal lines.
Regards!
Answer: My sacrifica has been made.
Explanation:
propose a synthetic route for the synthesis of a named alkanal starting with ethyl formate and grignard reagent.
Answer:
See explanation and image attached
Explanation:
A Grignard reagent is an alkyl magnesium halide. If it reacts with ethyl formate, an intermediate is formed as shown.
This intermediate can undergo water hydrolysis to form a diol, ethanol and MgBrOH.
Oxidation of the diol obtained now yields the corresponding alkanal which in this case is ethanal.
The scheme of the reaction is shown in the image attached to this answer.
3CaCl2 + 2AlF3 --> 3CaF2 + 2AlCl3 3CaCl2 + 2AlF3 --> 3CaF2 + 2AlCl3 How many grams of CaF2 will form from 36.5 grams of AlF3?
Answer:
32.1 g
Explanation:
3CaCl₂ + 2AlF₃ → 3CaF₂ + 2AlCl₃
First we convert 36.5 g of AlF₃ into moles, using its molar mass:
36.5 g ÷ 133.34 g/mol = 0.274 mol AlF₃
Then we convert 0.274 moles of AlF₃ into moles of CaF₂, using the stoichiometric coefficients of the reaction:
0.274 mol AlF₃ * [tex]\frac{3molCaF_2}{2molAlF_3}[/tex] = 0.411 mol CaF₂
Finally we convert 0.411 moles of CaF₂ into grams, using its molar mass:
0.411 mol * 78.07 g/mol = 32.1 g
how to calculate moles
Explanation:
First you must calculate the number of moles in this solution, by rearranging the equation. No. Moles (mol) = Molarity (M) x Volume (L) = 0.5 x 2. = 1 mol.
For NaCl, the molar mass is 58.44 g/mol. Now we can use the rearranged equation. Mass (g) = No. Moles (mol) x Molar Mass (g/mol) = 1 x 58.44. = 58.44 g.
Answer:
Number of moles : Mass (g) ÷ relative atomic mass
Describe the three freezing points. Is there a relationship between the amount of solute in the solution and the freezing temperature
Answer:
The three freezing points will all be slightly different. It is given that a water solution has a freezing point of zero degrees Celsius, so water would have a freezing temperature below that. Salt will lower the freezing point, the more that is added.
Explanation:
What are the free moving, charged particles in a molten mixture of aluminium oxide and cryolite?
Answer:
Ions.
Explanation:
Ions are the free moving, charged particles in a molten mixture of aluminum oxide and cryolite because the liquid state loosely held the molecules and the the molecules can easily move from one place to another. These ions helps in the conduction of electricity in the solution due to its free movement so we can say that ions are the charge particles that moves freely in the mixture of aluminum oxide and cryolite.
The free moving, charged particles in a molten mixture of aluminium oxide
and cryolite are known as Ions.
Ions are referred to an atom or compound which possesses an electrical
charge.The charge could be positive or negative and the positive ions are
called cations while the negative ions are referred to an anions.
Ions are usually free moving, take part in chemical reactions and help to
conduct electricity as a result of them being transferred from one point to
another.
Read more on https://brainly.com/question/7222067
If the H3O is 4.950 x 10-12 what is the ph?
Answer:
pH = 11.3
Explanation:
From the question given above, the following data were obtained:
Concentration of hydronium ion [H₃O⁺] = 4.950×10¯¹² M
pH =.?
The pH of a solution is defined by the following equation:
pH = –Log [H₃O⁺]
Thus, with the above formula, we can obtain the pH of the solution as follow:
Concentration of hydronium ion [H₃O⁺] = 4.950×10¯¹² M
pH =.?
pH = –Log [H₃O⁺]
pH = –Log 4.950×10¯¹²
pH = 11.3
Identify whether longhand notation or noble-gas notation was used in each case below.
Answer:
The given electronic configuration is long hand notation.
Explanation:
Long-hand notation of representing electronic configuration is defined as the arrangement of total number of electrons that are present in an element.
Noble-gas notation of representing electronic configuration is defined as the arrangement of valence electrons in the element. The core electrons are represented as the previous noble gas of the element that is considered.
The given electronic configuration of potassium (K):
The above configuration has all the electrons that are contained in the nucleus of an element. Thus, this configuration is a long-hand notation.
A man of 450 N covers an area of 0.0015m2 while standing on his feet.calculate the pressure exerted by him on the ground.
Answer:
3×10⁵ N/m²
Explanation:
From the question given above, the following data were obtained:
Force (F) = 450 N
Area (A) = 0.0015 m²
Pressure (P) =?
Pressure is simply defined as the force per unit area. Mathematically, it is expressed as:
Pressure (P) = Force (F) / Area (A)
P = F/A
With the above formula, we can obtain the pressure exerted by the man on the ground. This can be obtained as follow:
Force (F) = 450 N
Area (A) = 0.0015 m²
Pressure (P) =?
P = F/A
P = 450 /0.0015
P = 3×10⁵ N/m²
Thus, the pressure exerted by the man on the ground is 3×10⁵ N/m².
explain how the solid liquid line in the phase diagram of water differs in character from the solid liquid line in the phase diagrams of most other substances such as CO2
Answer:
The solid-liquid line in the water phase diagram has a negative slope, whereas for most other substances it has a positive slope.
The ice has a lower density as compared to water still they have in the solid phase.
Reason how the solid-liquid line in the phase diagram as compared to other:In the solid-liquid line in the water phase diagram it contains the negative slope. While the most other substance should have the positive slope.
Also, when the pressure is applied so the higher density should be favored. In the water, the highest density phase should be likely the liquid water.
Learn more about liquid here: https://brainly.com/question/17109464
A mixture of sulfuric acid and nitric acid will produce small quantities of the nitronium ion (NO2 ): The nitronium ion has a central nitrogen atom with a positive charge double bonded to two oxygen atoms on both sides. Each oxygen atom carries two lone pairs of electrons. Does the nitronium ion have any significant resonance structures
Answer:
A mixture of sulfuric acid and nitric acid will produce small quantities of the nitronium ion (NO2 ): The nitronium ion has a central nitrogen atom with a positive charge double bonded to two oxygen atoms on both sides. Each oxygen atom carries two lone pairs of electrons. Does the nitronium ion have any significant resonance structures?
Explanation:
The structure of nitronium ion is shown below:
Any molecule to exhibit resonance, it should have alternating double bonds.
Resonance is the phenomenon in which the structure of a molecule can be represented in two or more forms and each form is called canonical form.
The canonical forms do not differ in the position of atoms and they differ only in the position of double bonds.
For the given molecule, there are no alternating double bonds.
Hence, nitronium ion does not exhibit any significant resonance structures.
Refer to your completed Table 1d of the recitation guide of ionic compound naming rules to determine whether this statement is true or false. A Roman numeral in a compound name tells you how many of that ion appear in the formula. Select one: True False
Answer:
False
Explanation:
Roman numerals are seen in the names of several compounds. They often appear immediately after the name of central atom in the molecule.
These Roman numerals are used to depict the oxidation state of the central atom in the molecule and not to show how many of that ion appear in the formula.
For instance, in carbon IV oxide, the Roman numeral IV shows that the central atom in the compound-carbon is in the +4 oxidation state.
Name an alkene that would yield the alcohol above on hydration. (Submit a single name even if there is more than one correct answer. Ignore double bond stereochemistry.) Name: fill in the blank 75a878faaf91fe7_1 2,3-Dimethylpentane . Specify whether you would use hydroboration/oxidation or oxymercuration.
Answer:
Enzyme ? ...............
How do I balance this?
_CuC12 + _NaNO3 → _CU(NO3)2 + _ NaC1
[tex]CuCl_2+2NaNO_3 \rightarrow Cu(NO_3)_2 + 2NaCl[/tex]
what is the importance of energy in humans
Explanation:
Energy is essential to life and all living organisms. The sun, directly or indirectly, is the source of all the energy available on Earth. Our energy choices and decisions impact Earth's natural systems in ways we may not be aware of, so it is essential that we choose our energy sources carefully
54.56 g of water at 80.4 oC is added to a calorimeter that contains 47.24 g of water at 40 oC. If the final temperature of the system is 59.4 oC, what is the calorimeter constant (C calorimeter)
Answer:
49.5J/°C
Explanation:
The hot water lost some energy that is gained for cold water and the calorimeter.
The equation is:
Q(Hot water) = Q(Cold water) + Q(Calorimeter)
Where:
Q(Hot water) = S*m*ΔT = 4.184J/g°C*54.56g*(80.4°C-59.4°C) = 4794J
Q(Cold water) = S*m*ΔT = 4.184J/g°C*47.24g*(59.4°C-40°C) = 3834J
That means the heat gained by the calorimeter is
Q(Calorimeter) = 4794J - 3834J = 960J
The calorimeter constant is the heat gained per °C. The change in temperature of the calorimeter is:
59.4°C-40°C = 19.4°C
And calorimeter constant is:
960J/19.4°C =
49.5J/°C
is Decanitrogen tetroxide Ionic or Molecular
Answer:
Decanitrogen is molecular
Explanation:
Answer:
Dec a nitrogen is Molecular
Explanation:
hey mate i hope it will help you...!
9. The formular for finding the area
of an object is
A. Length + Width
B. Length - Width
C. Length : Width
D. Length x Width
E. 2 (Length + Width)
ans
Answer:
D. length × width
Explanation:
eg. 30 cm(length) × 20cm(width) = 600cm²
The most intense line in the emission spectrum for sodium appears at a wavelength of 589 nm. What color would you expect to observe when a solution that contains sodium ions is heated strongly in the flame of a Bunsen burner
Answer:
The most intense line in the emission spectrum for sodium appears at a wavelength of 589 nm.
What color would you expect to observe when a solution that contains sodium ions is heated strongly in the flame of a Bunsen burner?
Explanation:
Put a clean wire loop in a solid sample of the compound containing sodium ions, then keep it on the blue flame of the Bunsen burner.
The color of sodium ions in the Bunsen burner shows charactrestic yellow color.
someone answer please
Answer:
A
Explanation: